当前位置: 首页 > news >正文

避坑ffmpeg直接获取视频fps不准确

最近在做视频相关的任务,调试代码发现一个非常坑的点,就是直接用ffmpeg获取fps是有很大误差的,如下:

# GPT4o generated
import ffmpegprobe = ffmpeg.probe(video_path, v="error", select_streams="v:0", show_entries="stream=nb_frames,r_frame_rate")
r_frame_rate = probe['streams'][0]['r_frame_rate']
num, denom = map(int, r_frame_rate.split('/'))
fps = num / denom

我的任务里,上述代码给的fps是30,但是用总帧数除以总时长是29.91,误差还是比较大的。正确做法就是自己做除法:

# GPT4o generated
def get_video_info(video_path):probe = ffmpeg.probe(video_path)video_streams = [stream for stream in probe["streams"] if stream["codec_type"] == "video"]if not video_streams:raise ValueError("No video stream found")video_stream = video_streams[0]# 获取帧数frames = int(video_stream.get("nb_frames", 0))# 获取时长duration = float(video_stream.get("duration", probe["format"].get("duration", 0.0)))# 获取帧率# r_frame_rate = video_stream.get('r_frame_rate', '0/1')# num, den = map(int, r_frame_rate.split('/'))# fps = num / den # inaccuratefps = frames / durationreturn frames, duration, fps

真是成也GPT,败也GPT ==

相关文章:

避坑ffmpeg直接获取视频fps不准确

最近在做视频相关的任务,调试代码发现一个非常坑的点,就是直接用ffmpeg获取fps是有很大误差的,如下: # GPT4o generated import ffmpegprobe ffmpeg.probe(video_path, v"error", select_streams"v:0", sho…...

大数据新视界 -- 大数据大厂之 Hive 函数库:丰富函数助力数据处理(上)(11/ 30)

💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...

深入解析 Django 中数据删除的最佳实践:以动态管理镜像版本为例

文章目录 引言场景与模型设计场景描述 删除操作详解1. 删除单个 Tag2. 批量删除 Tags3. 删除前确认4. 日志记录 高阶优化与问题分析1. 外键约束与误删保护2. 并发删除的冲突处理3. 使用软删除 结合 Django Admin 的实现总结与实践思考 引言 在现代应用开发中,服务和…...

【java】sdkman-java多环境切换工具

#java #env #sdk #lcshand 首先我们来复习一下,可参考我原来的文章: python多个版本的切换可用pyenv nodejs多个版本的切换可用nvm 同样,java多个版本的切换可用sdkman和jenv,我偏重于使用sdkman,因为有时候我也需要…...

11.25c++继承、多态

练习: 编写一个 武器类 class Weapon{int atk; }编写3个武器派生类:短剑,斧头,长剑 class knife{int spd; }class axe{int hp; }class sword{int def; }编写一个英雄类 class Hero{int atk;int def;int spd;int hp; public:所有的…...

STM32F103外部中断配置

一、外部中断 在上一节我们介绍了STM32f103的嵌套向量中断控制器,其中包括中断的使能、失能、中断优先级分组以及中断优先级配置等内容。 1.1 外部中断/事件控制器 在STM32f103支持的60个可屏蔽中断中,有一些比较特殊的中断: 中断编号13 EXTI…...

阿里电商大整合,驶向价值竞争新航道

阿里一出手就是王炸。11月21日,阿里公布了最新动作:将国内和海外电商业务整合,成立新的电商事业群。这是阿里首次将所有电商业务整合到一起,也对电商行业未来发展有着借鉴意义。阿里为何要这么干?未来又将给行业带来哪…...

等保测评在云计算方面的应用讲解

等保测评(信息安全等级保护测评)在云计算方面的应用主要聚焦于如何满足等级保护相关要求,并确保云计算平台及其上运行的业务系统的安全性。以下是主要内容的讲解: 1. 云计算中的等保测评概述 等保测评是在我国网络安全等级保护制…...

QML TableView 实例演示 + 可能遇到的一些问题(Qt_6_5_3)

一、可能遇到的一些问题 Q1:如何禁用拖动? 在TableView下加一句代码即可: interactive: false 补充:这个属性并不专属于TableView,而是一个通用属性。很多Controls下的控件都可以使用,其主要作用就是控…...

SpringBoot(三十九)SpringBoot集成RabbitMQ实现流量削峰添谷

前边我们有具体的学习过RabbitMQ的安装和基本使用的情况。 但是呢&#xff0c;没有演示具体应用到项目中的实例。 这里使用RabbitMQ来实现流量的削峰添谷。 一&#xff1a;添加pom依赖 <!--rabbitmq-需要的 AMQP 依赖--> <dependency><groupId>org.springfr…...

前端 Vue 3 后端 Node.js 和Express 结合cursor常见提示词结构

cursor 提示词 后端提示词 请为我开发一个基于 Node.js 和Express 框架的 Todo List 后端项目。项目需要实现以下四个 RESTful API 接口&#xff1a; 查询所有待办事项 接口名: GET /api/get-todo功能: 从数据库的’list’集合中查询并返回所有待办事项参数: 无返回: 包含所…...

类和对象(下):点亮编程星河的类与对象进阶之光

再探构造函数 在实现构造函数时&#xff0c;对成员变量进行初始化主要有两种方式&#xff1a; 一种是常见的在函数体内赋值进行初始化&#xff1b;另一种则是通过初始化列表来完成初始化。 之前我们在构造函数中经常采用在函数体内对成员变量赋值的方式来给予它们初始值。例如&…...

42.接雨水

目录 题目过程解法 题目 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 过程 发现有特殊情况就是&#xff0c;最高峰的地方&#xff0c;如果右边小于他&#xff0c;然后再右边也都很小的话&#xff0c…...

使用Java代码操作Kafka(五):Kafka消费 offset API,包含指定 Offset 消费以及指定时间消费

文章目录 1、指定 Offset 消费2、指定时间消费 1、指定 Offset 消费 auto.offset.reset earliest | latest | none 默认是 latest &#xff08;1&#xff09;earliest&#xff1a;自动将偏移量重置为最早的偏移量&#xff0c;–from-beginning &#xff08;2&#xff09;lates…...

Ubuntu安装不同版本的opencv,并任意切换使用

参考&#xff1a; opencv笔记&#xff1a;ubuntu安装opencv以及多版本共存 | 高深远的博客 https://zhuanlan.zhihu.com/p/604658181 安装不同版本opencv及共存、切换并验证。_pkg-config opencv --modversion-CSDN博客 Ubuntu下多版本OpenCV共存和切换_ubuntu20如同时安装o…...

突破内存限制:Mac Mini M2 服务器化实践指南

本篇文章&#xff0c;我们聊聊如何使用 Mac Mini M2 来实现比上篇文章性价比更高的内存服务器使用&#xff0c;分享背后的一些小的思考。 希望对有类似需求的你有帮助。 写在前面 在上文《ThinkPad Redis&#xff1a;构建亿级数据毫秒级查询的平民方案》中&#xff0c;我们…...

【排版教程】Word、WPS 分节符(奇数页等) 自动变成 分节符(下一页) 解决办法

毕业设计排版时&#xff0c;一般要求每章节的起始页为奇数页&#xff0c;空白页不显示页眉和页脚。具体做法如下&#xff1a; 1 Word 在一个章节的内容完成后&#xff0c;在【布局】中&#xff0c;点击【分隔符】&#xff0c;然后选择【奇数页】 这样在下一章节开始的时&…...

【在Linux世界中追寻伟大的One Piece】多线程(二)

目录 1 -> 分离线程 2 -> Linux线程互斥 2.1 -> 进程线程间的互斥相关背景概念 2.2 -> 互斥量mutex 2.3 -> 互斥量的接口 2.4 -> 互斥量实现原理探究 3 -> 可重入VS线程安全 3.1 -> 概念 3.2 -> 常见的线程不安全的情况 3.3 -> 常见的…...

flink学习(8)——窗口函数

增量聚合函数 ——指窗口每进入一条数据就计算一次 例如&#xff1a;要计算数字之和&#xff0c;进去一个12 计算结果为20&#xff0c; 再进入一个7 ——结果为27 reduce aggregate(aggregateFunction) package com.bigdata.day04;public class _04_agg函数 {public static …...

「实战应用」如何用图表控件LightningChart .NET实现散点图?(一)

LightningChart .NET完全由GPU加速&#xff0c;并且性能经过优化&#xff0c;可用于实时显示海量数据-超过10亿个数据点。 LightningChart包括广泛的2D&#xff0c;高级3D&#xff0c;Polar&#xff0c;Smith&#xff0c;3D饼/甜甜圈&#xff0c;地理地图和GIS图表以及适用于科…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...