当前位置: 首页 > news >正文

洛谷刷题之p1631

在这里插入图片描述

序列合并

题目入口

题目描述

有两个长度为 N N N单调不降序列 A , B A,B A,B,在 A , B A,B A,B 中各取一个数相加可以得到 N 2 N^2 N2 个和,求这 N 2 N^2 N2 个和中最小的 N N N 个。

输入格式

第一行一个正整数 N N N

第二行 N N N 个整数 A 1 … N A_{1\dots N} A1N

第三行 N N N 个整数 B 1 … N B_{1\dots N} B1N

输出格式

一行 N N N 个整数,从小到大表示这 N N N 个最小的和。

样例 #1

样例输入 #1

3
2 6 6
1 4 8

样例输出 #1

3 6 7

提示

对于 50 % 50\% 50% 的数据, N ≤ 1 0 3 N \le 10^3 N103

对于 100 % 100\% 100% 的数据, 1 ≤ N ≤ 1 0 5 1 \le N \le 10^5 1N105 1 ≤ a i , b i ≤ 1 0 9 1 \le a_i,b_i \le 10^9 1ai,bi109

题解

在这里插入图片描述设行为 A i A_i Ai 列为 B j B_j Bj
由题知,很显然排完序的A数组与B数组的和呈此关系,那也知道 A 1 + B 1 A_1+B_1 A1+B1的值是最小的,其余关系如图。

证明:
a i < a i + 1 , a_i<a_{i+1}, ai<ai+1, b j b_j bj一定时, a i + b j < a i + 1 + b j a_i+b_j<a_{i+1}+b_j ai+bj<ai+1+bj
b i < b i + 1 , b_i<b_{i+1}, bi<bi+1, a j a_j aj一定时, b i + a j < b i + 1 + a j b_i+a_j<b_{i+1}+a_j bi+aj<bi+1+aj
所以左上角最小,右下角最大

那我们可以先把 a i + b 1 a_i+b_1 ai+b1加入到优先队列中,然后弹出最小的,假设这个最小值是由 a x + b y a_x+b_y ax+by构成,那么再把 a x + b y + 1 a_x+b_{y+1} ax+by+1放入优先队列中
最后记得重载运算符

Code

#include <bits/stdc++.h>using namespace std;const int Maxn = 1e5 + 10;
int pos_b[Maxn];
int a[Maxn], b[Maxn];
int id[Maxn];
struct node
{int pos;int num;bool operator<(const node &cur) const{return num > cur.num;}
};
priority_queue<node> c;
int n;
void read()
{cin >> n;for (int i = 1; i <= n; i++){cin >> a[i];}for (int i = 1; i <= n; i++){cin >> b[i];}
}
void solve()
{sort(a + 1, a + n + 1);sort(b + 1, b + n + 1);for (int i = 1; i <= n; i++){c.push({i, a[i] + b[1]});id[i] = 1;}for (int i = 1; i <= n; i++){node x = c.top();c.pop();cout << x.num << " ";int id2 = x.pos;c.push({id2, a[id2] + b[++id[id2]]});}
}
int main()
{read();solve();return 0;
}

相关文章:

洛谷刷题之p1631

序列合并 题目入口 题目描述 有两个长度为 N N N 的单调不降序列 A , B A,B A,B&#xff0c;在 A , B A,B A,B 中各取一个数相加可以得到 N 2 N^2 N2 个和&#xff0c;求这 N 2 N^2 N2 个和中最小的 N N N 个。 输入格式 第一行一个正整数 N N N&#xff1b; 第二…...

uniapp前端开发,基于vue3,element plus组件库,以及axios通讯

简介 UniApp 是一个基于 Vue.js 的跨平台开发框架&#xff0c;旨在通过一次开发、编译后运行在多个平台上&#xff0c;如 iOS、Android、H5、以及小程序&#xff08;微信小程序、支付宝小程序、百度小程序等&#xff09;等。UniApp 为开发者提供了统一的开发体验&#xff0c;使…...

在Unity中实现物体动画的完整流程

在Unity中&#xff0c;动画是游戏开发中不可或缺的一部分。无论是2D还是3D游戏&#xff0c;动画都能为游戏增添生动的视觉效果。本文将详细介绍如何在Unity中为物体添加动画&#xff0c;包括资源的准备、播放组件的添加、动画控制器的创建以及动画片段的制作与调度。 1. 准备动…...

【云计算网络安全】解析 Amazon 安全服务:构建纵深防御设计最佳实践

文章目录 一、前言二、什么是“纵深安全防御”&#xff1f;三、为什么有必要采用纵深安全防御策略&#xff1f;四、以亚马逊云科技为案例了解纵深安全防御策略设计4.1 原始设计缺少安全策略4.2 外界围栏构建安全边界4.3 访问层安全设计4.4 实例层安全设计4.5 数据层安全设计4.6…...

【Andriod ADB基本命令总结】

笔者工作当中遇到安卓机器的数据访问和上传,特来简单总结一下常用命令。 1、ADB命令简介与安装 简介: ADB (Android Debug Bridge) 是一个强大的命令行工具,用于与 Android 设备进行交互,常用于开发、调试、测试以及设备管理等操作。它是 Android 开发工具包(SDK)的一部…...

ChatGPT如何辅助academic writing?

今天想和大家分享一篇来自《Nature》杂志的文章《Three ways ChatGPT helps me in my academic writing》&#xff0c;如果您的日常涉及到学术论文的写作&#xff08;writing&#xff09;、编辑&#xff08;editing&#xff09;或者审稿&#xff08; peer review&#xff09;&a…...

Day 27 贪心算法 part01

贪心算法其实就是没有什么规律可言,所以大家了解贪心算法 就了解它没有规律的本质就够了。 不用花心思去研究其规律, 没有思路就立刻看题解。 基本贪心的题目 有两个极端,要不就是特简单,要不就是死活想不出来。 学完贪心之后再去看动态规划,就会了解贪心和动规的区别。…...

使用Python实现目标追踪算法

引言 目标追踪是计算机视觉领域的一个重要任务&#xff0c;广泛应用于视频监控、自动驾驶、机器人导航、运动分析等多个领域。目标追踪的目标是在连续的视频帧中定位和跟踪感兴趣的物体。本文将详细介绍如何使用Python和OpenCV实现一个基本的目标追踪算法&#xff0c;并通过一…...

某科技研发公司培训开发体系设计项目成功案例纪实

某科技研发公司培训开发体系设计项目成功案例纪实 ——建立分层分类的培训体系&#xff0c;加强培训跟踪考核&#xff0c;促进培训成果实现 【客户行业】科技研发行业 【问题类型】培训开发体系 【客户背景】 某智能科技研发公司是一家专注于智能科技、计算机软件技术开发与…...

如何通过高效的缓存策略无缝加速湖仓查询

引言 本文将探讨如何利用开源项目 StarRocks 的缓存策略来加速湖仓查询&#xff0c;为企业提供更快速、更灵活的数据分析能力。作为 StarRocks 社区的主要贡献者和商业化公司&#xff0c;镜舟科技深度参与 StarRocks 项目开发&#xff0c;也为企业着手构建湖仓架构提供更多参考…...

Linux V4L2框架介绍

linux V4L2框架介绍 V4L2框架介绍 V4L2&#xff0c;全称Video for Linux 2&#xff0c;是Linux操作系统下用于视频数据采集设备的驱动框。它提供了一种标准化的方式使用户空间程序能够与视频设备进行通信和交互。通过V4L2接口&#xff0c;用户可以方便地实现视频图像数据的采…...

【前端】JavaScript 中 arguments、类数组与数组的深入解析

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: 前端 文章目录 &#x1f4af;前言&#x1f4af;什么是 arguments 对象2.1 arguments 的定义2.2 arguments 的特性2.3 使用场景 &#x1f4af;深入了解 arguments 的结构3.1 arguments 的内部结构arguments 的关键属性…...

Android 布局菜单或按钮图标或Menu/Item设置可见和不可见

设置可见和不可见 即 设置 显示和隐藏&#xff1b;是双向设置&#xff1b;什么情况显示&#xff0c;什么情况隐藏分判断的条件 它不同于删除和屏蔽&#xff0c;删除和屏蔽&#xff0c;覆盖是单向的&#xff0c;不可逆转的。它间接等于单向的隐藏&#xff01;&#xff01;&…...

|| 与 ??的区别

?? : 空值合并运算符&#xff0c; 用于在左侧操作数为 null 或 undefined 时返回右侧操作数 let name null // null 或者 undefinedlet defaultName defaultNamelet displayName name ?? defaultNameconsole.log(displayName) // defaultName || : 逻辑或&#xff0c;…...

wordpress获取文章总数、分类总数、tag总数等

在制作wordpress模板的时候会要调用网站的文章总数分类总数tag总数等这个数值&#xff0c;如果直接用count查询数据库那就太过分了。好在wordpress内置了一些标签可以直接获取到这些数值&#xff0c;本文整理了一些常用的wordpress网站总数标签。 文章总数 <?php $count_…...

pytest 通过实例讲清单元测试、集成测试、测试覆盖率

1. 单元测试 概念 定义: 单元测试是对代码中最小功能单元的测试&#xff0c;通常是函数或类的方法。目标: 验证单个功能是否按照预期工作&#xff0c;而不依赖其他模块或外部资源。特点: 快速、独立&#xff0c;通常是开发者最先编写的测试。 示例&#xff1a;pytest 实现单…...

C#里怎么样自己实现10进制转换为二进制?

C#里怎么样自己实现10进制转换为二进制&#xff1f; 很多情况下&#xff0c;我们都是采用C#里类库来格式化输出二进制数。 如果有人要你自己手写一个10进制数转换为二进制数&#xff0c;并格式化输出&#xff0c; 就可以采用本文里的方法。 这里采用求模和除法来实现的。 下…...

Kafka-Consumer理论知识

一、上下文 之前的博客我们分析了Kafka的设计思想、Kafka的Producer端、Kafka的Server端的分析&#xff0c;为了完整性&#xff0c;我们接下来分析下Kafka的Consumer。《Kafka-代码示例》中有对应的Consumer示例代码&#xff0c;我们以它为入口进行分析 二、KafkaConsumer是什…...

Js-对象-04-Array

重点关注&#xff1a;Array String JSON BOM DOM Array Array对象时用来定义数组的。常用语法格式有如下2种&#xff1a; 方式1&#xff1a; var 变量名 new Array(元素列表); 例如&#xff1a; var arr new Array(1,2,3,4); //1,2,3,4 是存储在数组中的数据&#xff0…...

React 第八节组件生命周期钩子-类式组件,函数式组件模拟生命周期用法

概述 React组件的生命周期可以分为三个主要阶段&#xff1a; 挂载阶段&#xff08;Mounting&#xff09;&#xff1a;组件被创建&#xff0c;插入到DOM 树的过程&#xff1b; 更新阶段&#xff08;Updating&#xff09;&#xff1a;是组件中 props 以及state 发生变化时&#…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...