从 App Search 到 Elasticsearch — 挖掘搜索的未来
作者:来自 Elastic Nick Chow
App Search 将在 9.0 版本中停用,但 Elasticsearch 拥有你构建强大的 AI 搜索体验所需的一切。以下是你需要了解的内容。
生成式人工智能的最新进展正在改变用户行为,激励开发人员创造更具活力、更直观、更引人入胜的搜索体验。在 Elastic,我们专注于为开发人员配备 Elasticsearch 中强大的机器学习 (ML) 工具,以突破现代搜索体验的界限。
作为我们对创新的承诺的一部分,我们正在进行重要的转型。
- 我们为 Elasticsearch 配备了集成的搜索和机器学习工具,使语义搜索(由 Elastic Learned Sparse EncodeR (ELSER) 提供支持)变得像单个字段类型定义一样简单。
- 我们通过在 9.0 中停止使用 App Search 来简化开发人员需要做出的架构选择。
- 我们已将迁移列入你的时间表:App Search 将保留其在 8.x 系列中的当前功能集,我们将继续提供安全升级和修复。
对于刚接触 Elasticsearch 功能的用户,App Search 用户传统上享受的相同易用性和开箱即用的搜索功能现在都集成到了 Elasticsearch 体验中。现在,用户可以拥有一切 —— 从几分钟内即可开始搜索的易用型开始,到可根据你的用例进行微调的无限可定制搜索工具集。
你可以期待以下内容:
- 语义搜索变得简单:
- 新的 semantic_text 字段和 semantic 查询允许仅使用单个字段进行 ML 驱动的语义搜索。
- 用于语义搜索的开箱即用的稀疏向量模型 (ELSER) 或选择自带
- 增强的相关性工具:
- 使用具有语义重新排序和学习排序的本机实现的中后期重新排序模型来提高相关性。
- 用于语义重新排序的开箱即用的交叉编码器重新排序模型(Elastic rerank)或选择自带
- 强大的向量功能:访问向量数据库和向量搜索工具,并轻松将向量和标记搜索与混合技术相结合。
- 最先进的向量数据压缩技术:查看 BBQ!
- 大型语言模型 (LLM) 支持的聊天体验:使用由 AI Playground 的 LLM 支持的开箱即用的聊天体验快速启动你的检索增强生成 (RAG) 工作流程!
- 简化的架构:消除对企业搜索节点的需求,同时通过索引调整和优化的 Elasticsearch 查询实现高效扩展并提升性能。
以上所有功能(通过出色的 UI 体验来管理相关性)可衡量搜索的有效性并扩展到满足我们组织搜索需求的未来目标。
准备好迁移了吗?
由于 App Search 基于 Elasticsearch 索引,因此转换很容易。我们有一个 Python 笔记本来帮助迁移,以及 App Search 文档中的功能比较表。
想要在转换之前试用一下吗?我们有一个完全托管的 Elasticsearch Serverless 版本可以帮助你入门。
搜索的未来是 Elasticsearch!
敬请期待 - 我们将继续在 Elasticsearch 中推出更多令人兴奋的搜索功能,例如用于 GPU 工作负载的 Elastic 推理服务和更好的 LLM 支持。
本文中描述的任何特性或功能的发布和时间均由 Elastic 自行决定。任何当前不可用的特性或功能可能无法按时交付或根本无法交付。
原文:From App Search to Elasticsearch — Tap into the future of search | Elastic Blog
相关文章:

从 App Search 到 Elasticsearch — 挖掘搜索的未来
作者:来自 Elastic Nick Chow App Search 将在 9.0 版本中停用,但 Elasticsearch 拥有你构建强大的 AI 搜索体验所需的一切。以下是你需要了解的内容。 生成式人工智能的最新进展正在改变用户行为,激励开发人员创造更具活力、更直观、更引人入…...

鸿蒙本地模拟器 模拟TCP服务端的过程
鸿蒙模拟器模拟TCP服务端的过程涉及几个关键步骤,主要包括创建TCPSocketServer实例、绑定IP地址和端口、监听连接请求、接收和发送数据以及处理连接事件。以下是详细的模拟过程: **1.创建TCPSocketServer实例:**首先,需要导入鸿蒙…...

Qt/C++基于重力模拟的像素点水平堆叠效果
本文将深入解析一个基于 Qt/C 的像素点模拟程序。程序通过 重力作用,将随机分布的像素点下落并水平堆叠,同时支持窗口动态拉伸后重新计算像素点分布。 程序功能概述 随机生成像素点:程序在初始化时随机生成一定数量的像素点,每个…...
Zookeeper学习心得
本人学zookeeper时按照此文路线学的 Zookeeper学习大纲 - 似懂非懂视为不懂 - 博客园 一、Zookeeper安装 ZooKeeper 入门教程 - Java陈序员 - 博客园 Docker安装Zookeeper教程(超详细)_docker 安装zk-CSDN博客 二、 zookeeper的数据模型 ZooKeepe…...
嵌入式开发工程师面试题 - 2024/11/24
原文嵌入式开发工程师面试题 - 2024/11/24 转载请注明来源 1.若有以下定义语句double a[8],*pa;int i5;对数组元素错误的引用是? A *a B a[5] C *(p1) D p[8] 解析: 在 C 或 C 语言中&am…...

Python中打印当前目录文件树的脚本
效果图: 实现脚本: 1、显示所有文件和文件夹: import osdef list_files(startpath, prefix):items os.listdir(startpath)items.sort()for index, item in enumerate(items):item_path os.path.join(startpath, item)is_last index le…...

全景图像(Panorama Image)向透视图像(Perspective Image)的跨视图转化(Cross-view)
一、概念讲解 全景图像到透视图像的转化是一个复杂的图像处理过程,它涉及到将一个360度的全景图像转换为一个具有透视效果的图像,这种图像更接近于人眼观察世界的方式。全景图像通常是一个矩形图像,它通过将球面图像映射到平面上得到…...
Redis 中的 hcan 命令耗内存,有什么优化的方式吗 ?
Redis 中的 hcan 命令耗内存,有什么优化的方式吗 ? 1. 使用合适的游标值:2. 控制每次迭代返回的键数量:3. 避免长时间运行的迭代:4. 使用HSCAN与SCAN命令结合:5. 优化哈希表结构:6. 监控和调整R…...

豆包MarsCode算法题:三数之和问题
问题描述 思路分析 1. 排序数组 目的: 将数组 arr 按升序排序,这样可以方便地使用双指针找到满足条件的三元组,同时避免重复的三元组被重复计算。优势: 数组有序后,处理两个数和 target - arr[i] 的问题可以通过双指针快速找到所有可能的组…...

【Android】AnimationDrawable帧动画的实现
目录 引言 一、AnimationDrawable常用方法 1.1 导包 1.2 addFrame 1.3 setOneShot 1.4 start 1.5 stop 1.6 isRunning 二、 从xml文件获取并播放帧动画 2.1 创建XML文件 2.2 在布局文件中使用帧动画资源 三、在代码中生成并播放帧动画 3.1 addFrame加入帧动画列…...

【消息序列】详解(7):剖析回环模式--设备测试的核心利器
目录 一、概述 1.1. 本地回环模式 1.2. 远程环回模式 二、本地回环模式(Local Loopback mode) 2.1. 步骤 1:主机进入本地环回模式 2.2. 本地回环测试 2.2.1. 步骤 2a:主机发送HCI数据包并接收环回数据 2.2.2. 步骤 2b&…...
解决Ubuntu 22.04系统中网络Ping问题的方法
在Ubuntu 22.04系统中,网络问题时有发生,尤其是当涉及到静态IP地址配置和网线直连的两台机器时。本文将探讨一种常见问题——断开并重新连接网线后,尽管网卡显示为UP状态,但无法立即ping通对方机器,以及如何解决这一问…...

【大数据学习 | Spark-SQL】Spark-SQL编程
上面的是SparkSQL的API操作。 1. 将RDD转化为DataFrame对象 DataFrame: DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。这样的数…...

15分钟做完一个小程序,腾讯这个工具有点东西
我记得很久之前,我们都在讲什么低代码/无代码平台,这个概念很久了,但是,一直没有很好的落地,整体的效果也不算好。 自从去年 ChatGPT 这类大模型大火以来,各大科技公司也都推出了很多 AI 代码助手ÿ…...

manim动画编程(安装+入门)
文章目录 1.基本介绍2.效果展示3.安装步骤3.1安装manba软件3.2配置环境变量3.3查看是否成功3.4什么是mamba3.5创建虚拟环境3.6尝试进入虚拟环境 4.vscode操作4.1默认配置文件 5.安装ffmpeg6.安装manim软件6.vscode制作7.我的学习收获 1.基本介绍 这个manim就是一款软件&#x…...
STL算法之数值算法<stl_numeric.h>
这一节介绍的算法,统称为数值(numeric)算法。STL规定,欲使用它们,客户端必须包含头文件<numeric>.SGI将它们实现与<stl_numeric.h>文件中。 目录 运用实例 accumulate adjacent_difference inner_product partial_sum pow…...
Oracle如何记录登录用户IP
在运维场景中,在定位到某个SQL引起系统故障之后,想知道是哪台机器发过来的,方便定位源头,该如何解决? 在 Oracle 数据库中记录登录用户的 IP 地址可以通过多种方法实现。以下是几种常见的方法,包括使用触发…...

Python图像处理:打造平滑液化效果动画
液化动画中的强度变化是通过在每一帧中逐渐调整液化效果的强度参数来实现的。在提供的代码示例中,强度变化是通过一个简单的线性插值方法来控制的,即随着动画帧数的增加,液化效果的强度也逐渐增加。 def liquify_image(image, center, radius…...
构建Ceph分布式文件共享系统:手动部署指南
#作者:西门吹雪 文章目录 micro-Services-TutorialCeph分布式文件共享方案部署Ceph集群使用CephCeph在kubernetes集群中的使用 micro-Services-Tutorial 微服务最早由Martin Fowler与James Lewis于2014年共同提出,微服务架构风格是一种使用一套小服务来开发单个应…...

数据结构——用数组实现栈和队列
目录 用数组实现栈和队列 一、数组实现栈 1.stack类 2.测试 二、数组实现队列 1.Queue类 2.测试 查询——数组:数组在内存中是连续空间 增删改——链表:链表的增删改处理更方便一些 满足数据先进后出的特点的就是栈,先进先出就是队列…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...

跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...

USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
JS设计模式(4):观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...