当前位置: 首页 > news >正文

每天五分钟机器学习:支持向量机数学基础之超平面分离定理

本文重点

超平面分离定理(Separating Hyperplane Theorem)是数学和机器学习领域中的一个重要概念,特别是在凸集理论和最优化理论中有着广泛的应用。该定理表明,在特定的条件下,两个不相交的凸集总可以用一个超平面进行分离。

定义与表述

超平面分离定理(Separating Hyperplane Theorem)又称凸集分离定理,其表述如下:

定义:若C和D为非空凸集,且C ∩ D = ∅,则存在非零向量a和常数b,使得对于所有x ∈ C,有a^T x ≤ b,对于所有x ∈ D,有a^T x ≥ b。也即,存在一个超平面{ x | a^T x = b }将C和D分离。

这个定理的核心在于,两个不相交的凸集总可以找到一个超平面,使得这两个集合分别位于超平面的两侧。

所以根据超平面分离定

相关文章:

每天五分钟机器学习:支持向量机数学基础之超平面分离定理

本文重点 超平面分离定理(Separating Hyperplane Theorem)是数学和机器学习领域中的一个重要概念,特别是在凸集理论和最优化理论中有着广泛的应用。该定理表明,在特定的条件下,两个不相交的凸集总可以用一个超平面进行分离。 定义与表述 超平面分离定理(Separating Hy…...

TCP/IP网络协议栈

TCP/IP网络协议栈是一个分层的网络模型,用于在互联网和其他网络中传输数据。它由几个关键的协议层组成,每一层负责特定的功能。以下是对TCP/IP协议栈的简要介绍: TCP/IP协议模型的分层 1. 应用层(Application Layer)…...

利用编程思维做题之最小堆选出最大的前10个整数

1. 理解问题 我们需要设计一个程序,读取 80,000 个无序的整数,并将它们存储在顺序表(数组)中。然后从这些整数中选出最大的前 10 个整数,并打印它们。要求我们使用时间复杂度最低的算法。 由于数据量很大,直…...

详解MVC架构与三层架构以及DO、VO、DTO、BO、PO | SpringBoot基础概念

🙋大家好!我是毛毛张! 🌈个人首页: 神马都会亿点点的毛毛张 今天毛毛张分享的是SpeingBoot框架学习中的一些基础概念性的东西:MVC结构、三层架构、POJO、Entity、PO、VO、DO、BO、DTO、DAO 文章目录 1.架构1.1 基本…...

Unity C# 影响性能的坑点

c用的时间长了怕unity的坑忘了&#xff0c;记录一下。 GetComponent最好使用GetComponent<T>()的形式&#xff0c; 继承自Monobehaviour的函数要避免空的Awake()、Start()、Update()、FixedUpdate().这些空回调会造成性能浪费 GetComponent方法最好避免在Update当中使用…...

工作学习:切换git账号

概括 最近工作用的git账号下发下来了&#xff0c;需要切换一下使用的账号。因为是第一次弄&#xff0c;不熟悉&#xff0c;现在记录一下。 打开设置 路径–git—git remotes&#xff0c;我这里选择项是Manage Remotes&#xff0c;点进去就可以了。 之后会出现一个输入框&am…...

量化交易系统开发-实时行情自动化交易-8.量化交易服务平台(一)

19年创业做过一年的量化交易但没有成功&#xff0c;作为交易系统的开发人员积累了一些经验&#xff0c;最近想重新研究交易系统&#xff0c;一边整理一边写出来一些思考供大家参考&#xff0c;也希望跟做量化的朋友有更多的交流和合作。 接下来会对于收集整理的33个量化交易服…...

Scala习题

姓名&#xff0c;语文&#xff0c;数学&#xff0c;英语 张伟&#xff0c;87&#xff0c;92&#xff0c;88 李娜&#xff0c;90&#xff0c;85&#xff0c;95 王强&#xff0c;78&#xff0c;90&#xff0c;82 赵敏&#xff0c;92&#xff0c;88&#xff0c;91 孙涛&#xff0c…...

结构方程模型(SEM)入门到精通:lavaan VS piecewiseSEM、全局估计/局域估计;潜变量分析、复合变量分析、贝叶斯SEM在生态学领域应用

目录 第一章 夯实基础 R/Rstudio简介及入门 第二章 结构方程模型&#xff08;SEM&#xff09;介绍 第三章 R语言SEM分析入门&#xff1a;lavaan VS piecewiseSEM 第四章 SEM全局估计&#xff08;lavaan&#xff09;在生态学领域高阶应用 第五章 SEM潜变量分析在生态学领域…...

OpenCV图像基础处理:通道分离与灰度转换

在计算机视觉处理中&#xff0c;理解图像的颜色通道和灰度表示是非常重要的基础知识。今天我们通过Python和OpenCV来探索图像的基本组成。 ## 1. 图像的基本组成 在数字图像处理中&#xff0c;彩色图像通常由三个基本颜色通道组成&#xff1a; - 蓝色&#xff08;Blue&#x…...

C++ 类和对象(类型转换、static成员)

目录 一、前言 二、正文 1.隐式类型转换 1.1隐式类型转换的使用 2.static成员 2.1 static 成员的使用 2.1.1static修辞成员变量 2.1.2 static修辞成员函数 三、结语 一、前言 大家好&#xff0c;我们又见面了。昨天我们已经分享了初始化列表&#xff1a;https://blog.c…...

【网络安全设备系列】12、态势感知

0x00 定义&#xff1a; 态势感知&#xff08;Situation Awareness&#xff0c;SA&#xff09;能够检测出超过20大类的云上安全风险&#xff0c;包括DDoS攻击、暴力破解、Web攻击、后门木马、僵尸主机、异常行为、漏洞攻击、命令与控制等。利用大数据分析技术&#xff0c;态势感…...

Linux介绍与安装指南:从入门到精通

1. Linux简介 1.1 什么是Linux&#xff1f; Linux是一种基于Unix的操作系统&#xff0c;由Linus Torvalds于1991年首次发布。Linux的核心&#xff08;Kernel&#xff09;是开源的&#xff0c;允许任何人自由使用、修改和分发。Linux操作系统通常包括Linux内核、GNU工具集、图…...

BGE-M3模型结合Milvus向量数据库强强联合实现混合检索

在基于生成式人工智能的应用开发中&#xff0c;通过关键词或语义匹配的方式对用户提问意图进行识别是一个很重要的步骤&#xff0c;因为识别的精准与否会影响后续大语言模型能否检索出合适的内容作为推理的上下文信息&#xff08;或选择合适的工具&#xff09;以给出用户最符合…...

鸿蒙NEXT开发案例:文字转拼音

【引言】 在鸿蒙NEXT开发中&#xff0c;文字转拼音是一个常见的需求&#xff0c;本文将介绍如何利用鸿蒙系统和pinyin-pro库实现文字转拼音的功能。 【环境准备】 • 操作系统&#xff1a;Windows 10 • 开发工具&#xff1a;DevEco Studio NEXT Beta1 Build Version: 5.0.…...

CTF之密码学(栅栏加密)

栅栏密码是古典密码的一种&#xff0c;其原理是将一组要加密的明文划分为n个一组&#xff08;n通常根据加密需求确定&#xff0c;且一般不会太大&#xff0c;以保证密码的复杂性和安全性&#xff09;&#xff0c;然后取每个组的第一个字符&#xff08;有时也涉及取其他位置的字…...

修改插槽样式,el-input 插槽 append 的样式

需缩少插槽 append 的 宽度 方法1、使用内联样式直接修改&#xff0c;指定 width 为 30px <el-input v-model"props.applyBasicInfo.outerApplyId" :disabled"props.operateCommandType input-modify"><template #append><el-button click…...

UPLOAD LABS | PASS 01 - 绕过前端 JS 限制

关注这个靶场的其它相关笔记&#xff1a;UPLOAD LABS —— 靶场笔记合集-CSDN博客 0x01&#xff1a;过关流程 本关的目标是上传一个 WebShell 到目标服务器上&#xff0c;并成功访问&#xff1a; 我们直接尝试上传后缀为 .php 的一句话木马&#xff1a; 如上&#xff0c;靶场弹…...

【css实现收货地址下边的平行四边形彩色线条】

废话不多说&#xff0c;直接上代码&#xff1a; <div class"address-block" ><!-- 其他内容... --><div class"checked-ar"></div> </div> .address-block{height:120px;position: relative;overflow: hidden;width: 500p…...

缓存方案分享

不知道大家平常更新缓存是怎么做的&#xff0c;但是大部分时候都是更新数据的同时更新缓存&#xff0c;今天和同事一起聊到一个缓存方案的问题&#xff0c;感觉很有趣、非常精妙&#xff0c;记录一下。 基于此本文将介绍几种常见的缓存更新策略&#xff0c;包括简单的缓存覆盖…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用

在工业制造领域&#xff0c;无损检测&#xff08;NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统&#xff0c;以非接触式光学麦克风技术为核心&#xff0c;打破传统检测瓶颈&#xff0c;为半导体、航空航天、汽车制造等行业提供了高灵敏…...

Vue ③-生命周期 || 脚手架

生命周期 思考&#xff1a;什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff09; 什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命周期&#xff1a; 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...