【人工智能】使用Python实现序列到序列(Seq2Seq)模型进行机器翻译
解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界
序列到序列(Sequence-to-Sequence, Seq2Seq)模型是解决序列输入到序列输出任务的核心架构,广泛应用于机器翻译、文本摘要和问答系统等自然语言处理任务中。本篇文章深入介绍 Seq2Seq 模型的原理及其核心组件(编码器、解码器和注意力机制),并基于 Python 和 TensorFlow 实现一个简单的中英机器翻译系统。文章涵盖从数据准备、模型构建到训练和评估的完整流程,提供详尽的代码和中文注释,帮助读者系统掌握 Seq2Seq 模型的理论与实践。
目录
- 什么是 Seq2Seq 模型?
- 应用场景
- 架构简介
- Seq2Seq 的关键组件
- 编码器(Encoder)
- 解码器(Decoder)
- 注意力机制(Attention)
- 数据准备
- 数据集下载与预处理
- 分词与词表构建
- 使用 Python 构建 Seq2Seq 模型
- 编码器的实现
- 解码器的实现
- 注意力机制的实现
- 模型训练与评估
- 扩展:改进模型的方向
- 总结与实践建议
1. 什么是 Seq2Seq 模型?
1.1 应用场景
Seq2Seq 模型是一种将输入序列转换为输出序列的架构,广泛应用于以下任务:
- 机器翻译:将一种语言翻译为另一种语言。
- 文本摘要:生成简要的内容摘要。
- 语音识别:将语音转换为文本。
1.2 架构简介
Seq2Seq 模型由 编码器(Encoder) 和 解码器(Decoder) 两部分组成。编码器将输入序列编码为固定长度的上下文向量(Context Vector),解码器根据该上下文向量生成目标序列。
其基本工作流程如下:
- 编码器接收输入序列并提取特征,生成上下文向量。
- 解码器根据上下文向量逐步生成输出序列。
以下为 Seq2Seq 模型的逻辑示意图:
输入序列 --> [编码器] --> 上下文向量 --> [解码器] --> 输出序列
2. Seq2Seq 的关键组件
2.1 编码器(Encoder)
编码器通常由递归神经网络(RNN)、长短时记忆网络(LSTM)或门控循环单元(GRU)构成,用于将输入序列映射到上下文向量。
数学表达
设输入序列为 (x = (x_1, x_2, \ldots, x_T)),编码器通过递归公式计算隐藏状态:
h t = f ( x t , h t − 1 ) h_t = f(x_t, h_{t-1}) ht=f(xt,ht−1)
其中:
- (h_t) 为时间步 (t) 的隐藏状态。
- (f) 为 RNN 单元(如 LSTM 或 GRU)。
2.2 解码器(Decoder)
解码器接收上下文向量和前一步生成的输出,通过递归生成目标序列 (y = (y_1, y_2, \ldots, y_T’))。
数学表达
解码器的隐藏状态计算为:
s t = f ( y t − 1 , s t − 1 , c ) s_t = f(y_{t-1}, s_{t-1}, c) st=f(yt−
相关文章:
【人工智能】使用Python实现序列到序列(Seq2Seq)模型进行机器翻译
解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 序列到序列(Sequence-to-Sequence, Seq2Seq)模型是解决序列输入到序列输出任务的核心架构,广泛应用于机器翻译、文本摘要和问答系统等自然语言处理任务中。本篇文章深入介绍 Seq2Seq 模型的原理及其核心组件(…...
量化交易系统开发-实时行情自动化交易-4.4.1.做市策略实现
19年创业做过一年的量化交易但没有成功,作为交易系统的开发人员积累了一些经验,最近想重新研究交易系统,一边整理一边写出来一些思考供大家参考,也希望跟做量化的朋友有更多的交流和合作。 接下来继续说说做市策略实现。 做市策…...
Pinia之2:计数器案例、computed函数、异步action、storeToRefs函数、pinia调试
欢迎来到“雪碧聊技术”CSDN博客! 在这里,您将踏入一个专注于Java开发技术的知识殿堂。无论您是Java编程的初学者,还是具有一定经验的开发者,相信我的博客都能为您提供宝贵的学习资源和实用技巧。作为您的技术向导,我将…...
Microsoft Excel如何插入多行
1.打开要编辑的excel表,在指定位置,鼠标右键点击“插入”一行 2.按住shift键,鼠标的光标箭头会变化成如下图所示 3.一直按住shift键和鼠标左键,往下拖动,直至到插入足够的行...
Redis【1】- 如何阅读Redis 源码
1 Redis 的简介 Redis 实际上是简称,全称为 Remote Dictionary Server (远程字典服务器),由 Salvatore Sanfilippo 写的高性能 key-value 存储系统,其完全开源免费,遵守 BSD 协议。Redis 与其他 key-value 缓存产品(如…...
shell查看服务器的内存和CPU,实时使用情况
要查看服务器的内存和 CPU 实时使用情况,可以使用以下方法和命令: 1. 使用 top 运行 top 命令以显示实时的系统性能信息,包括 CPU 和内存使用情况。 top按 q 退出。输出内容包括: CPU 使用率:位于顶部,标…...
软件/游戏提示:mfc42u.dll没有被指定在windows上运行如何解决?多种有效解决方法汇总分享
遇到“mfc42u.dll 没有被指定在 Windows 上运行”的错误提示,通常是因为系统缺少必要的运行库文件或文件损坏。以下是多种有效的解决方法,可以帮助你解决这个问题: 原因分析 出现这个错误的原因是Windows无法找到或加载MFC42u.dll文件。这可…...
《Python基础》之函数、模块与库
目录 简介 一、函数 1、数学类函数 2、聚合类函数 3、和进制相关的函数 4、字符类函数 5、类型转换相关函数 6、获取输出类函数 二、模块与库的使用方法 1、模块和库的导入方法 2、第三方模块的下载 下载方法 简介 在Python编程的世界中,函数、模块和库是…...
selinux和防火墙实验
1 、 selinux 的说明 SELinux 是 Security-Enhanced Linux 的缩写,意思是安全强化的 linux 。 SELinux 主要由美国国家安全局( NSA )开发,当初开发的目的是为了避免资源的误用。 系统资源都是通过程序进行访问的,如…...
k8s Init:ImagePullBackOff 的解决方法
kubectl describe po (pod名字) -n kube-system 可查看pod所在的节点信息 例如: kubectl describe po calico-node-2lcxx -n kube-system 执行拉取前先把用到的节点的源换了 sudo mkdir -p /etc/docker sudo tee /etc/docker/daemon.json <<-EOF {"re…...
Spring AOP相关知识详解
难 文章目录 1.AOP介绍1.1 面向切面编程 - Aspect Oriented Programming (AOP)1.2 优点 2.AOP的概念2.1 连接点、切入点、通知、切面:2.2 注解2.2.1 通知类型2.2.1.1 通知的优先级排序 2.2.2 其他重要注解2.2.3 示例代码(四种通知) 3.Spring …...
selinux和防火墙
第七章 selinux 一、selinux的说明 SELinux:安全强化的 linux,Security-Enhanced Linux的缩写 SELinux : 由美国国家安全局( NSA )开发,目的是为了避免资源的误用 SELinux: 是对程序、文件等权…...
【vue for beginner】Composition API 和 Options API 的区别
🌈Don’t worry , just coding! 内耗与overthinking只会削弱你的精力,虚度你的光阴,每天迈出一小步,回头时发现已经走了很远。 📗概念 vue2中的方式叫Options API ,vue3中叫Composition API。 Composition…...
jmeter5.6.3安装教程
一、官网下载 需要提前配置好jdk的环境变量 jmeter官网:https://jmeter.apache.org/download_jmeter.cgi 选择点击二进制的zip文件 下载成功后,默认解压下一步,更改安装路径就行(我安装在D盘) 实用jmeter的bin目录作为系统变量 然后把这…...
关于Spring基础了解
Spring简介 Spring框架是一个开源的Java应用框架,旨在简化企业级应用程序的开发。它提供了一系列强大的工具和服务,帮助开发者构建高质量的Java应用程序。Spring框架的核心理念是使开发过程更加模块化、可测试和可维护。 主要特性 依赖注入(…...
输入json 达到预览效果
下载 npm i vue-json-pretty2.4.0 <template><div class"newBranchesDialog"><t-base-dialogv-if"addDialogShow"title"Json数据配置"closeDialog"closeDialog":dialogVisible"addDialogShow":center"…...
DataLoade类与list ,iterator ,yield的用法
1 问题 探索DataLoader的属性,方法 Vscode中图标含意 list 与 iterator 的区别,尤其yield的用法 2 方法 知乎搜索DataLoader的属性,方法 pytorch基础的dataloader类是 from torch.utils.data.dataloader import Dataloader 其主要的参数如下&…...
model_selection.train_test_split函数介绍
目录 model_selection.train_test_split函数实战 model_selection.train_test_split函数 model_selection.train_test_split 是 Scikit-Learn 中用于将数据集拆分为训练集和测试集的函数。这个函数非常有用,因为在机器学习中,我们通常需要将数据集分为训…...
Springboot 读取 resource 目录下的Excel文件并下载
代码示例: GetMapping("/download") public void download(HttpServletResponse response) {try {String filename "测试.xls";OutputStream outputStream response.getOutputStream();// 获取springboot resource 路径下的文件InputStream inputStream…...
SQL EXISTS 子句的深入解析
SQL EXISTS 子句的深入解析 引言 SQL(Structured Query Language)作为一种强大的数据库查询语言,广泛应用于各种数据库管理系统中。在SQL查询中,EXISTS子句是一种非常实用的工具,用于检查子查询中是否存在至少一行数…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
