当前位置: 首页 > news >正文

【人工智能】使用Python实现序列到序列(Seq2Seq)模型进行机器翻译

解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界

序列到序列(Sequence-to-Sequence, Seq2Seq)模型是解决序列输入到序列输出任务的核心架构,广泛应用于机器翻译、文本摘要和问答系统等自然语言处理任务中。本篇文章深入介绍 Seq2Seq 模型的原理及其核心组件(编码器、解码器和注意力机制),并基于 Python 和 TensorFlow 实现一个简单的中英机器翻译系统。文章涵盖从数据准备、模型构建到训练和评估的完整流程,提供详尽的代码和中文注释,帮助读者系统掌握 Seq2Seq 模型的理论与实践。


目录

  1. 什么是 Seq2Seq 模型?
    • 应用场景
    • 架构简介
  2. Seq2Seq 的关键组件
    • 编码器(Encoder)
    • 解码器(Decoder)
    • 注意力机制(Attention)
  3. 数据准备
    • 数据集下载与预处理
    • 分词与词表构建
  4. 使用 Python 构建 Seq2Seq 模型
    • 编码器的实现
    • 解码器的实现
    • 注意力机制的实现
  5. 模型训练与评估
  6. 扩展:改进模型的方向
  7. 总结与实践建议

1. 什么是 Seq2Seq 模型?

1.1 应用场景

Seq2Seq 模型是一种将输入序列转换为输出序列的架构,广泛应用于以下任务:

  • 机器翻译:将一种语言翻译为另一种语言。
  • 文本摘要:生成简要的内容摘要。
  • 语音识别:将语音转换为文本。

1.2 架构简介

Seq2Seq 模型由 编码器(Encoder)解码器(Decoder) 两部分组成。编码器将输入序列编码为固定长度的上下文向量(Context Vector),解码器根据该上下文向量生成目标序列。

其基本工作流程如下:

  1. 编码器接收输入序列并提取特征,生成上下文向量。
  2. 解码器根据上下文向量逐步生成输出序列。

以下为 Seq2Seq 模型的逻辑示意图:

输入序列 --> [编码器] --> 上下文向量 --> [解码器] --> 输出序列

2. Seq2Seq 的关键组件

2.1 编码器(Encoder)

编码器通常由递归神经网络(RNN)、长短时记忆网络(LSTM)或门控循环单元(GRU)构成,用于将输入序列映射到上下文向量。

数学表达

设输入序列为 (x = (x_1, x_2, \ldots, x_T)),编码器通过递归公式计算隐藏状态:
h t = f ( x t , h t − 1 ) h_t = f(x_t, h_{t-1}) ht=f(xt,ht1)
其中:

  • (h_t) 为时间步 (t) 的隐藏状态。
  • (f) 为 RNN 单元(如 LSTM 或 GRU)。

2.2 解码器(Decoder)

解码器接收上下文向量和前一步生成的输出,通过递归生成目标序列 (y = (y_1, y_2, \ldots, y_T’))。

数学表达

解码器的隐藏状态计算为:
s t = f ( y t − 1 , s t − 1 , c ) s_t = f(y_{t-1}, s_{t-1}, c) st=f(yt

相关文章:

【人工智能】使用Python实现序列到序列(Seq2Seq)模型进行机器翻译

解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 序列到序列(Sequence-to-Sequence, Seq2Seq)模型是解决序列输入到序列输出任务的核心架构,广泛应用于机器翻译、文本摘要和问答系统等自然语言处理任务中。本篇文章深入介绍 Seq2Seq 模型的原理及其核心组件(…...

量化交易系统开发-实时行情自动化交易-4.4.1.做市策略实现

19年创业做过一年的量化交易但没有成功,作为交易系统的开发人员积累了一些经验,最近想重新研究交易系统,一边整理一边写出来一些思考供大家参考,也希望跟做量化的朋友有更多的交流和合作。 接下来继续说说做市策略实现。 做市策…...

Pinia之2:计数器案例、computed函数、异步action、storeToRefs函数、pinia调试

欢迎来到“雪碧聊技术”CSDN博客! 在这里,您将踏入一个专注于Java开发技术的知识殿堂。无论您是Java编程的初学者,还是具有一定经验的开发者,相信我的博客都能为您提供宝贵的学习资源和实用技巧。作为您的技术向导,我将…...

Microsoft Excel如何插入多行

1.打开要编辑的excel表,在指定位置,鼠标右键点击“插入”一行 2.按住shift键,鼠标的光标箭头会变化成如下图所示 3.一直按住shift键和鼠标左键,往下拖动,直至到插入足够的行...

Redis【1】- 如何阅读Redis 源码

1 Redis 的简介 Redis 实际上是简称,全称为 Remote Dictionary Server (远程字典服务器),由 Salvatore Sanfilippo 写的高性能 key-value 存储系统,其完全开源免费,遵守 BSD 协议。Redis 与其他 key-value 缓存产品(如…...

shell查看服务器的内存和CPU,实时使用情况

要查看服务器的内存和 CPU 实时使用情况,可以使用以下方法和命令: 1. 使用 top 运行 top 命令以显示实时的系统性能信息,包括 CPU 和内存使用情况。 top按 q 退出。输出内容包括: CPU 使用率:位于顶部,标…...

软件/游戏提示:mfc42u.dll没有被指定在windows上运行如何解决?多种有效解决方法汇总分享

遇到“mfc42u.dll 没有被指定在 Windows 上运行”的错误提示,通常是因为系统缺少必要的运行库文件或文件损坏。以下是多种有效的解决方法,可以帮助你解决这个问题: 原因分析 出现这个错误的原因是Windows无法找到或加载MFC42u.dll文件。这可…...

《Python基础》之函数、模块与库

目录 简介 一、函数 1、数学类函数 2、聚合类函数 3、和进制相关的函数 4、字符类函数 5、类型转换相关函数 6、获取输出类函数 二、模块与库的使用方法 1、模块和库的导入方法 2、第三方模块的下载 下载方法 简介 在Python编程的世界中,函数、模块和库是…...

selinux和防火墙实验

1 、 selinux 的说明 SELinux 是 Security-Enhanced Linux 的缩写,意思是安全强化的 linux 。 SELinux 主要由美国国家安全局( NSA )开发,当初开发的目的是为了避免资源的误用。 系统资源都是通过程序进行访问的,如…...

k8s Init:ImagePullBackOff 的解决方法

kubectl describe po (pod名字) -n kube-system 可查看pod所在的节点信息 例如&#xff1a; kubectl describe po calico-node-2lcxx -n kube-system 执行拉取前先把用到的节点的源换了 sudo mkdir -p /etc/docker sudo tee /etc/docker/daemon.json <<-EOF {"re…...

Spring AOP相关知识详解

难 文章目录 1.AOP介绍1.1 面向切面编程 - Aspect Oriented Programming (AOP)1.2 优点 2.AOP的概念2.1 连接点、切入点、通知、切面&#xff1a;2.2 注解2.2.1 通知类型2.2.1.1 通知的优先级排序 2.2.2 其他重要注解2.2.3 示例代码&#xff08;四种通知&#xff09; 3.Spring …...

selinux和防火墙

第七章 selinux 一、selinux的说明 SELinux&#xff1a;安全强化的 linux&#xff0c;Security-Enhanced Linux的缩写 SELinux &#xff1a; 由美国国家安全局&#xff08; NSA &#xff09;开发&#xff0c;目的是为了避免资源的误用 SELinux&#xff1a; 是对程序、文件等权…...

【vue for beginner】Composition API 和 Options API 的区别

&#x1f308;Don’t worry , just coding! 内耗与overthinking只会削弱你的精力&#xff0c;虚度你的光阴&#xff0c;每天迈出一小步&#xff0c;回头时发现已经走了很远。 &#x1f4d7;概念 vue2中的方式叫Options API &#xff0c;vue3中叫Composition API。 Composition…...

jmeter5.6.3安装教程

一、官网下载 需要提前配置好jdk的环境变量 jmeter官网&#xff1a;https://jmeter.apache.org/download_jmeter.cgi 选择点击二进制的zip文件 下载成功后&#xff0c;默认解压下一步&#xff0c;更改安装路径就行(我安装在D盘) 实用jmeter的bin目录作为系统变量 然后把这…...

关于Spring基础了解

Spring简介 Spring框架是一个开源的Java应用框架&#xff0c;旨在简化企业级应用程序的开发。它提供了一系列强大的工具和服务&#xff0c;帮助开发者构建高质量的Java应用程序。Spring框架的核心理念是使开发过程更加模块化、可测试和可维护。 主要特性 依赖注入&#xff08…...

输入json 达到预览效果

下载 npm i vue-json-pretty2.4.0 <template><div class"newBranchesDialog"><t-base-dialogv-if"addDialogShow"title"Json数据配置"closeDialog"closeDialog":dialogVisible"addDialogShow":center"…...

DataLoade类与list ,iterator ,yield的用法

1 问题 探索DataLoader的属性&#xff0c;方法 Vscode中图标含意 list 与 iterator 的区别&#xff0c;尤其yield的用法 2 方法 知乎搜索DataLoader的属性&#xff0c;方法 pytorch基础的dataloader类是 from torch.utils.data.dataloader import Dataloader 其主要的参数如下&…...

model_selection.train_test_split函数介绍

目录 model_selection.train_test_split函数实战 model_selection.train_test_split函数 model_selection.train_test_split 是 Scikit-Learn 中用于将数据集拆分为训练集和测试集的函数。这个函数非常有用&#xff0c;因为在机器学习中&#xff0c;我们通常需要将数据集分为训…...

Springboot 读取 resource 目录下的Excel文件并下载

代码示例: GetMapping("/download") public void download(HttpServletResponse response) {try {String filename "测试.xls";OutputStream outputStream response.getOutputStream();// 获取springboot resource 路径下的文件InputStream inputStream…...

SQL EXISTS 子句的深入解析

SQL EXISTS 子句的深入解析 引言 SQL&#xff08;Structured Query Language&#xff09;作为一种强大的数据库查询语言&#xff0c;广泛应用于各种数据库管理系统中。在SQL查询中&#xff0c;EXISTS子句是一种非常实用的工具&#xff0c;用于检查子查询中是否存在至少一行数…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...