Paddle Inference部署推理(十)
十:Paddle Inference推理 (python)API详解
9. 启用内存优化
API定义如下:
# 开启内存 / 显存复用,具体降低内存效果取决于模型结构
# 参数:None
# 返回:None
paddle.inference.Config.enable_memory_optim()
代码示例:
# 引用 paddle inference 预测库
import paddle.inference as paddle_infer# 创建 config
config = paddle_infer.Config("./mobilenet_v1.pdmodel", "./mobilenet_v1.pdiparams")# 开启 CPU 显存优化
config.enable_memory_optim()# 启用 GPU 进行预测
config.enable_use_gpu(100, 0)# 开启 GPU 显存优化
config.enable_memory_optim()
10. 设置缓存路径
注意: 如果当前使用的为 TensorRT INT8 且设置从内存中加载模型,则必须通过 set_optim_cache_dir 来设置缓存路径。
API定义如下:
# 设置缓存路径
# 参数:opt_cache_dir - 缓存路径
# 返回:None
paddle.inference.Config.set_optim_cache_dir(opt_cache_dir: str)
代码示例:
# 引用 paddle inference 预测库
import paddle.inference as paddle_infer# 创建 config
config = paddle_infer.Config("./mobilenet_v1.pdmodel", "./mobilenet_v1.pdiparams")# 设置缓存路径
config.set_optim_cache_dir("./OptimCacheDir")
11. Profile 设置
API定义如下:
# 打开 Profile,运行结束后会打印所有 OP 的耗时占比
# 参数:None
# 返回:None
paddle.inference.Config.enable_profile()
代码示例:
# 引用 paddle inference 预测库
import paddle.inference as paddle_infer# 创建 config
config = paddle_infer.Config("./mobilenet_v1.pdmodel", "./mobilenet_v1.pdiparams")# 打开 Profile
config.enable_profile()
执行预测之后输出的 Profile 的结果如下:
-------------------------> Profiling Report <-------------------------Place: CPU
Time unit: ms
Sorted by total time in descending order in the same thread------------------------- Overhead Summary -------------------------Total time: 1085.33Computation time Total: 1066.24 Ratio: 98.2411%Framework overhead Total: 19.0902 Ratio: 1.75893%------------------------- GpuMemCpy Summary -------------------------GpuMemcpy Calls: 0 Total: 0 Ratio: 0%------------------------- Event Summary -------------------------Event Calls Total Min. Max. Ave. Ratio.
thread0::conv2d 210 319.734 0.815591 6.51648 1.52254 0.294595
thread0::load 137 284.596 0.114216 258.715 2.07735 0.26222
thread0::depthwise_conv2d 195 266.241 0.955945 2.47858 1.36534 0.245308
thread0::elementwise_add 210 122.969 0.133106 2.15806 0.585568 0.113301
thread0::relu 405 56.1807 0.021081 0.585079 0.138718 0.0517635
thread0::batch_norm 195 25.8073 0.044304 0.33896 0.132345 0.0237783
thread0::fc 15 7.13856 0.451674 0.714895 0.475904 0.0065773
thread0::pool2d 15 1.48296 0.09054 0.145702 0.0988637 0.00136636
thread0::softmax 15 0.941837 0.032175 0.460156 0.0627891 0.000867786
thread0::scale 15 0.240771 0.013394 0.030727 0.0160514 0.000221841
12. Log 设置
API定义如下:
# 去除 Paddle Inference 运行中的 LOG
# 参数:None
# 返回:None
paddle.inference.Config.disable_glog_info()# 判断是否禁用 LOG
# 参数:None
# 返回:bool - 是否禁用 LOG
paddle.inference.Config.glog_info_disabled()
代码示例:
# 引用 paddle inference 预测库
import paddle.inference as paddle_infer# 创建 config
config = paddle_infer.Config("./mobilenet_v1.pdmodel", "./mobilenet_v1.pdiparams")# 去除 Paddle Inference 运行中的 LOG
config.disable_glog_info()# 判断是否禁用 LOG - true
print("GLOG INFO is: {}".format(config.glog_info_disabled()))
13. 查看config配置
API定义如下:
# 返回 config 的配置信息
# 参数:None
# 返回:string - config 配置信息
paddle.inference.Config.summary()
调用summary()的输出如下所示:
+-------------------------------+----------------------------------+
| Option | Value |
+-------------------------------+----------------------------------+
| model_dir | ./inference_pass/TRTFlattenTest/ |
+-------------------------------+----------------------------------+
| cpu_math_thread | 1 |
| enable_mkldnn | false |
| mkldnn_cache_capacity | 10 |
+-------------------------------+----------------------------------+
| use_gpu | true |
| gpu_device_id | 0 |
| memory_pool_init_size | 100MB |
| thread_local_stream | false |
| use_tensorrt | true |
| tensorrt_precision_mode | fp32 |
| tensorrt_workspace_size | 1073741824 |
| tensorrt_max_batch_size | 32 |
| tensorrt_min_subgraph_size | 0 |
| tensorrt_use_static_engine | false |
| tensorrt_use_calib_mode | false |
| tensorrt_enable_dynamic_shape | false |
| tensorrt_use_oss | true |
| tensorrt_use_dla | false |
+-------------------------------+----------------------------------+
| use_xpu | false |
+-------------------------------+----------------------------------+
| ir_optim | true |
| ir_debug | false |
| memory_optim | false |
| enable_profile | false |
| enable_log | true |
+-------------------------------+----------------------------------+
相关文章:
Paddle Inference部署推理(十)
十:Paddle Inference推理 (python)API详解 9. 启用内存优化 API定义如下: # 开启内存 / 显存复用,具体降低内存效果取决于模型结构 # 参数:None # 返回:None paddle.inference.Config.enable…...

万能门店小程序管理系统 doPageGetFormList SQL注入漏洞复现
0x01 产品简介 万能门店小程序管理系统是一款功能强大的工具,旨在为各行业商家提供线上线下融合的全方位解决方案。是一个集成了会员管理和会员营销两大核心功能的综合性平台。它支持多行业使用,通过后台一键切换版本,满足不同行业商家的个性化需求。该系统采用轻量后台,搭…...

全面+彻底解决VMware安装后没有VMnet1和VMnet8的问题
目录 1、摘要 (1)问题 (2)所用工具 ① Everything软件 ② CCleaner软件 2、问题的检查与确认 3、解决过程 (1)卸载已经安装的VMware (2)设置services.mcs:服务自…...

什么是堆?
堆(Heap):堆可以看做是一颗用数组实现的二叉树,所以它没有使用父指针或者子指针。堆根据“堆属性”来排序,“堆属性”决定了树中节点的位置。 堆的特性 1.堆是完全二叉树,除了树的最后一层节点不需要是满的…...

微距动物和植物摄影后期森系风格Lr调色教程,手机滤镜PS+Lightroom预设下载!
调色教程 微距动物和植物摄影后期采用森系风格的 Lightroom 调色,将微距下的动植物世界打造成充满自然气息和梦幻感的画面。这种调色风格旨在突出动植物的细腻之美,同时营造出宁静、清新的森林氛围。 预设信息 调色风格:森系风格预设适合类…...

Qt6.8安卓Android开发环境配置
时隔多年,重拾QtCreator下Android开发。发现Qt6下安卓开发环境配置变简单不少!只需三步即可在QtCreator下进行Android开发: 一、使用Qt Mantenance Tool进行Android模块的安装: 如果感觉安装网速较慢,可以查看本人另外…...

RK3568部署yolo8记录
本教程记录自己一下在RK3568上部署yolo8的步骤 板端驱动 在板端,首先查看rknpu驱动是否安装、存在。若键入下面的命令有返回则,证明驱动已安装。 dmesg | grep -i rknpu 瑞芯微官方说,驱动版本最好大于0.9.2。但是我看有的博主说ÿ…...

数据可视化复习2-绘制折线图+条形图(叠加条形图,并列条形图,水平条形图)+ 饼状图 + 直方图
目录 目录 一、绘制折线图 1.使用pyplot 2.使用numpy 编辑 3.使用DataFrame 编辑 二、绘制条形图(柱状图) 1.简单条形图 2.绘制叠加条形图 3.绘制并列条形图 4.水平条形图 编辑 三、绘制饼状图 四、绘制散点图和直方图 1.散点图 2…...
JavaScript原生深拷贝方法 structuredClone使用
structuredClone 简介 structuredClone 是现代浏览器提供的原生 JavaScript 方法,用于深拷贝对象。它可以处理各种复杂数据结构,包括嵌套对象、数组、Date、Map、Set 等,且支持循环引用。 语法 const clone structuredClone(value);value:…...

SpringBoot无法使用jkd8问题
1. 解决SpringBoot无法使用jdk8问题 创建一个高 jkd 版本,如 jkd21 在创建项目后,将 pom.xml中的 jdk 版本改为8,找到下图所在位置修改即可。 此外将 SpringBoot 的版本修改为 2 开头的 如2.7.4 ,然后 刷新 Maven 项目即可。 在 …...

使用 Jina Embeddings v2 在 Elasticsearch 中进行后期分块
作者:来自 Elastic Gustavo Llermaly 在 Elasticsearch 中使用 Jina Embeddings v2 模型并探索长上下文嵌入模型的优缺点。 在本文中,我们将配置和使用 jina-embeddings-v2,这是第一个开源 8K 上下文长度嵌入模型,首先使用 semant…...

QT简易项目 数据库可视化界面 数据库编程SQLITE QT5.12.3环境 C++实现
案例需求: 完成数据库插入,删除,修改,查看操作。 分为 插入,删除,修改,查看,查询 几个模块。 代码: widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget…...
python json.dump()和json.dumps()的区别
用人话总结一下 json.dump()是针对文件的json和python的转换 json.dumps()主要是针对内容数据 json.dumps(obj, skipkeysFalse, ensure_asciiTrue, check_circularTrue, allow_nanTrue, clsNone, indentNone, separatorsNone, encoding“utf-8”, defaultNone, sort_keysFalse…...

网络流学习笔记
注:笔者是蒟蒻,所以本文几乎是干货,枯燥无味甚至可能会引人不适,请读者谨慎阅读。 为了笔者快爆掉的肝点个赞好吗??? Part.1 网络流基础定义 一个有向带权图 G ( V , E ) G(V,E) G(V,E) 是…...
Mybatis PLUS查询对List使用OR模糊查询
Mybatis PLUS查询对List使用OR模糊查询 1、版本2、代码3、效果 1、版本 Mybatis PLUS版本:3.5.7 注意:版本3.1.2及以下是需要return的 因当前为高版本,代码中已将 return 注释。 2、代码 QueryWrapper<Object> queryWrapper new Que…...
Debezium日常分享系列之:Debezium Engine
Debezium日常分享系列之:Debezium Engine 依赖打包项目在代码中输出消息格式消息转换消息转换谓词高级记录使用引擎属性异步引擎属性数据库模式历史属性处理故障 Debezium连接器通常通过部署到Kafka Connect服务来运行,并配置一个或多个连接器来监视上游…...

I.MX6U 裸机开发20. DDR3 内存知识
I.MX6U 裸机开发20. DDR3 内存知识 一、DDR3内存简介1. DDR发展历程SRAMSDRAMDDR1DDR2DDR3DDR4DDR5 2. 开发板资源3. DDR3的时间参数1. 传输速率2. tRCD3. CL 参数作用取值范围工作原理4. tRC参数原理单位与取值5. tRAS重要性及作用 二、I.MX6U MMDC 控制器1. MMDC简介…...

【R安装】VSCODE安装及R语言环境配置
目录 VSCODE下载及安装VSCODE上配置R语言环境参考 Visual Studio Code(简称“VSCode” )是Microsoft在2015年4月30日Build开发者大会上正式宣布一个运行于 Mac OS X、Windows和 Linux 之上的,针对于编写现代Web和云应用的跨平台源代码编辑器&…...
ES更新问题 Failed to close the XContentBuilder异常
问题描述 使用RestHighLevelClient对文档进行局部更新的时候报错如下: Suppressed: java.lang.IllegalStateException: Failed to close the XContentBuilderat org.elasticsearch.common.xcontent.XContentBuilder.close(XContentBuilder.java:1011)at org.elast…...
svn-git下载
windows: svn 客户端:-------------- TortoiseSVN 安装 下载地址:https://tortoisesvn.net/downloads.html, 页面里有语言包补丁的下载链接。 目前最新版为 1.11.0 下载地址: https://osdn.net/projects/tortoisesvn/storage/1.…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...

Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...

Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...

PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...