力扣hot100-->前缀和/前缀书/LRU缓存
前缀和
1. 560. 和为 K 的子数组
中等
给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的子数组的个数 。
子数组是数组中元素的连续非空序列。
示例 1:
输入:nums = [1,1,1], k = 2 输出:2
示例 2:
输入:nums = [1,2,3], k = 3 输出:2
提示:
1 <= nums.length <= 2 * 104-1000 <= nums[i] <= 1000-107 <= k <= 107
class Solution {
public:
int subarraySum(vector<int>& nums, int k) {
int n = nums.size(); // 获取输入数组的大小
unordered_map<int,int> unMap; // 哈希表,用来存储前缀和的频次
unMap[0] = 1; // 初始化哈希表,表示前缀和为0出现1次(这对从索引0开始的子数组非常重要)vector<int> pre(n+1); // 存储前缀和的数组(pre[i] 表示 nums[0] 到 nums[i-1] 的和)
int result{}; // 用于存储满足条件的子数组个数
for(int i = 0; i < n; ++i) {
pre[i+1] = pre[i] + nums[i]; // 更新当前的前缀和
// 判断当前前缀和减去 k 是否存在于哈希表中
if(unMap.find(pre[i+1] - k) != unMap.end()) {
// 如果存在,说明从之前某个位置到当前的位置的子数组和为 k
result += unMap[pre[i+1] - k]; // 将该频次累加到结果中
}// 更新当前前缀和的频次
unMap[pre[i+1]]++;
}return result; // 返回满足条件的子数组个数
}
};
解释:
per[i+1] 表示从 nums[0] 到 nums[i] 的累加和。
子数组 nums[0..i] 的和可以通过公式计算: sum(nums[0..i])=per[i+1]−per[0]
前缀树
1. 208. 实现 Trie (前缀树)
中等
Trie(发音类似 "try")或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补全和拼写检查。
请你实现 Trie 类:
Trie()初始化前缀树对象。void insert(String word)向前缀树中插入字符串word。boolean search(String word)如果字符串word在前缀树中,返回true(即,在检索之前已经插入);否则,返回false。boolean startsWith(String prefix)如果之前已经插入的字符串word的前缀之一为prefix,返回true;否则,返回false。
示例:
输入
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
输出
[null, null, true, false, true, null, true]解释
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // 返回 True
trie.search("app"); // 返回 False
trie.startsWith("app"); // 返回 True
trie.insert("app");
trie.search("app"); // 返回 True
// 字典树(Trie)的实现
class Trie {
private:
// 子节点数组,存储当前节点的所有子节点(26个字母)
vector<Trie*> children;// 标记当前节点是否是某个单词的结束
bool isEnd;// 辅助函数:查找指定前缀的最后一个节点
Trie* searchPrefix(string prefix) {
Trie* node = this; // 从当前节点(根节点)开始查找
for (char ch : prefix) { // 遍历前缀字符串的每个字符
ch -= 'a'; // 将字符转换为索引值('a' 对应索引 0,'z' 对应索引 25)
if (node->children[ch] == nullptr) { // 如果对应的子节点不存在
return nullptr; // 前缀不存在,返回空指针
}
node = node->children[ch]; // 移动到子节点
}
return node; // 返回前缀的最后一个节点
}public:
// 构造函数:初始化根节点
Trie() : children(26), isEnd(false) {}// 插入一个单词到字典树
void insert(string word) {
Trie* node = this; // 从根节点开始插入
for (char ch : word) { // 遍历单词的每个字符
ch -= 'a'; // 将字符转换为索引
if (node->children[ch] == nullptr) { // 如果对应的子节点不存在
node->children[ch] = new Trie(); // 创建一个新的子节点
}
node = node->children[ch]; // 移动到子节点
}
node->isEnd = true; // 标记该节点为单词的结束
}// 搜索一个完整单词是否存在于字典树中
bool search(string word) {
Trie* node = this->searchPrefix(word); // 查找单词的最后一个节点
return node != nullptr && node->isEnd; // 节点存在且是单词结尾
}// 判断是否存在以指定前缀开头的字符串
bool startsWith(string prefix) {
return this->searchPrefix(prefix) != nullptr; // 查找前缀是否存在
}
};
相关文章:
力扣hot100-->前缀和/前缀书/LRU缓存
前缀和 1. 560. 和为 K 的子数组 中等 给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的子数组的个数 。 子数组是数组中元素的连续非空序列。 示例 1: 输入:nums [1,1,1], k 2 输出:2示例 2&#…...
Three.js CSS2D/CSS3D渲染器
在Three.js开发过程中,有时需要将 HTML 元素与 Three.js 渲染的 3D 场景相结合,这就需要用到 CSS2DRenderer 和 CSS3DRenderer。本文将详细介绍这两种渲染器的原理及其应用 一、CSS2DRenderer 渲染器 概述 CSS2DRenderer 渲染器用于在 3D 场景中渲染纯…...
mongodb文档字符串批量替换
【mongodb文档字符串批量替换脚本语句】 前言: 1、本方式对于数据量大的情况不适用,执行可能比较慢; 2、数据量大的情况,个人推荐代码层面解决,多线程替换更快: (1)写实体类的方式…...
前端安全和解决方案
提到这个我可能想到的就是不要暴露太多的账号密码信息。一些页面的请求和操作要加上权限。 然后下面就详细的介绍前端可能遇到的安全问题以及解决方法。 首先比较常见的前端的安全性问题就是跨站脚本攻击(XSS)。跨站请求伪造(csrfÿ…...
Tlias智能辅助学习系统-部门管理
包括查询、新增、删除、修改功能 控制层 package com.itheima.controller;import com.itheima.pojo.Dept; import com.itheima.pojo.Result; import com.itheima.service.DeptService; import lombok.extern.slf4j.Slf4j; import lombok.extern.slf4j.XSlf4j; import org.spr…...
React第十节组件之间传值之context
1、Context 使用creatContext() 和 useContext() Hook 实现多层级传值 概述: 在我们想要每个层级都需要某一属性,或者祖孙之间需要传值时,我们可以使用 props 一层一层的向下传递,或者我们使用更便捷的方案,用 creatC…...
flink中barrier不对齐的原因和影响
Barrier 不对齐(Barrier Misalignment)可能导致一些性能和一致性相关的问题,但 Flink 提供了机制来确保即使在不对齐的情况下,也可以保证数据的一致性。 1. 什么是 Barrier 不对齐? Barrier 不对齐是指在分布式数据流…...
软银集团孙正义再度加码OpenAI,近屿智能专注AI人才培养
11月28日凌晨,全球最大财经CNBC报道,软银集团创始人兼CEO孙正义再次向人工智能领域的领军企业OpenAI投资了15亿美元。软银对OpenAI的投资已不是首次。就在上个月,软银已在OpenAI的上一轮融资中注入了5亿美元的资金。但他一直寻求获得OpenAI更…...
麒麟系统x86安装达梦数据库
一、安装准备前工作 操作系统:银河麒麟V10,CPU: x86_64 架构 下载地址,麒麟官网:https://www.kylinos.cn/ 数据库:dm8_20220915_x86_kylin10_64 下载地址,达梦数据库官网:https://…...
Java中的“多态“详解
多态(Polymorphism)是面向对象编程(OOP)中的一个核心概念,它允许同一个接口或方法在不同对象上具有不同的实现方式。多态性使得程序在运行时可以根据对象的实际类型来决定调用哪个方法,从而提高代码的灵活性…...
buuctf-[SUCTF 2019]EasySQL 1解题记录
把你的旗帜给我,我会告诉你这面旗帜是对的。 堆叠注入查询数据库 1; show databases; 查询表名 1; show tables; 获取flag 1;set sql_modepipes_as_concat;select 1...
ASP.NET Core 入门
使用 .NET CLI 创建并运行 ASP.NET Core Web 应用。 文章目录 一、先决条件二、创建Web应用项目三、运行应用四、编辑Razor页面 一、先决条件 .NET 8.0 SDK 二、创建Web应用项目 打开命令行界面,然后输入以下命令: dotnet new webapp --output aspne…...
php反序列化1_常见php序列化的CTF考题
声明: 以下多内容来自暗月师傅我是通过他的教程来学习记录的,如有侵权联系删除。 一道反序列化的CTF题分享_ctf反序列化题目_Mr.95的博客-CSDN博客 一些其他大佬的wp参考:php_反序列化_1 | dayu’s blog (killdayu.com) 序列化一个对象将…...
题目 1013: [编程入门]Sn的公式求和
题目 1013: [编程入门]Sn的公式求和 [编程入门]Sn的公式求和 求Snaaaaaa…aa…aaa(有n个a)之值,其中a是一个数字,为2。 例如,n5时222222222222222,n由键盘输入。 #include<stdio.h> int A(int n)…...
算法——赎金信(leetcode383)
题目: 给你两个字符串:ransomNote 和 magazine ,判断 ransomNote 能不能由 magazine 里面的字符构成。 如果可以,返回 true ;否则返回 false 。 magazine 中的每个字符只能在 ransomNote 中使用一次。 示例 1&#…...
transformers训练(NLP)阅读理解(多项选择)
简介 在阅读理解任务中,有一种通过多项选择其中一个答案来训练机器的阅读理解。比如:给定一个或多个文档h,以及一个问题S和对应的多个答案候选,输出问题S的答案E,E是答案候选中的某一个选项。 这样的目的就是通过文档,…...
微软企业邮箱:安全可靠的企业级邮件服务!
微软企业邮箱的设置步骤?如何注册使用烽火域名邮箱? 微软企业邮箱作为一款专为企业设计的邮件服务,不仅提供了高效便捷的通信工具,更在安全性、可靠性和功能性方面树立了行业标杆。烽火将深入探讨微软企业邮箱的多重优势。 微软…...
什么是分布式锁
定义 分布式锁是控制分布式系统或集群中不同节点对共享资源访问的一种机制。在分布式环境下,多个节点(如多个服务器或多个进程)可能会同时访问诸如数据库中的某条记录、一个共享文件或者一个全局计数器等共享资源。分布式锁的目的是确保在同一…...
【含开题报告+文档+PPT+源码】基于SpringBoot的艺术培训学校管理系统的设计与实现
开题报告 艺术培训学校管理在现代教育行业中发挥着至关重要的作用,旨在为学员提供及时、专业且高效的课程服务,同时也激励培训机构不断提升教学质量与管理水平。然而,传统的艺术培训学校管理模式常面临一系列挑战,如课程报名程序…...
【网络安全 | 漏洞挖掘】绕过SAML认证获得管理员面板访问权限
未经许可,不得转载。 文章目录 什么是SAML认证?SAML是如何工作的?SAML响应结构漏洞结果什么是SAML认证? SAML(安全断言标记语言)用于单点登录(SSO)。它是一种功能,允许用户在多个服务之间切换时无需多次登录。例如,如果你已经登录了facebook.com,就不需要再次输入凭…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
【笔记】WSL 中 Rust 安装与测试完整记录
#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...
