【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)

目录
一、引言
二、图片特征抽取(image-feature-extraction)
2.1 概述
2.2 google/ViT
2.3 pipeline参数
2.3.1 pipeline对象实例化参数
2.3.2 pipeline对象使用参数
2.4 pipeline实战
2.5 模型排名
三、总结
一、引言
pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型

今天介绍多模态的第三篇:图片特征抽取(image-feature-extraction),在huggingface库内有300个图片特征抽取(image-feature-extraction)模型。
二、图片特征抽取(image-feature-extraction)
2.1 概述
图片特征抽取(image-feature-extraction)用途非常广泛,指将图片、视频抽帧等多模态内容向量化,在图片视频内容相似比对、推荐模型、迁移学习、检索排序、RAG等场景非常常用。

常用的图片特征抽取方法从最早期的CNN,到对比学习SimCLR、clip,再到ViT经过多年发展,已将可以较为准确将图片转化为特征向量,用于下游业务。
2.2 google/ViT
以google在2021年6月3日发布的Vision Transformer (ViT)为例,传统的图片识别通过CNN卷机神经网络提取图片信息,ViT将Transformer技术应用到图片分类上,开启了Transformer应用于计算机视觉的先河。该模型也是图片特征抽取(image-feature-extraction)任务的默认模型:google/vit-base-patch16-224

ViT(视觉transformer)主要原理:首先将图片切分成大小相等的块序列(分辨率为16*16),对每个图片块进行线性嵌入添加位置信息,通过喂入一个标准的transformer encoder结构进行特征交叉后,送入到MLP层,通过增加额外的分类标记构建分类任务,完成网络构造。详细论文
2.3 pipeline参数
2.3.1 pipeline对象实例化参数
- model(PreTrainedModel或TFPreTrainedModel)— 管道将使用其进行预测的模型。 对于 PyTorch,这需要从PreTrainedModel继承;对于 TensorFlow,这需要从TFPreTrainedModel继承。
- image_processor ( BaseImageProcessor ) — 管道将使用的图像处理器来为模型编码数据。此对象继承自 BaseImageProcessor。
- modelcard(
str或ModelCard,可选) — 属于此管道模型的模型卡。- framework(
str,可选)— 要使用的框架,"pt"适用于 PyTorch 或"tf"TensorFlow。必须安装指定的框架。- task(
str,默认为"")— 管道的任务标识符。- num_workers(
int,可选,默认为 8)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的工作者数量。- batch_size(
int,可选,默认为 1)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的批次的大小,对于推理来说,这并不总是有益的,请阅读使用管道进行批处理。- args_parser(ArgumentHandler,可选) - 引用负责解析提供的管道参数的对象。
- device(
int,可选,默认为 -1)— CPU/GPU 支持的设备序号。将其设置为 -1 将利用 CPU,设置为正数将在关联的 CUDA 设备 ID 上运行模型。您可以传递本机torch.device或str太- torch_dtype(
str或torch.dtype,可选) - 直接发送model_kwargs(只是一种更简单的快捷方式)以使用此模型的可用精度(torch.float16,,torch.bfloat16...或"auto")- binary_output(
bool,可选,默认为False)——标志指示管道的输出是否应以序列化格式(即 pickle)或原始输出数据(例如文本)进行。- image_processor_kwargs(
dict,可选) - 传递给图像处理器的关键字参数的附加词典,例如 {“size”:{“height”:100,“width”:100}}- pool(
bool,可选,默认为False)— 是否返回池化输出。如果是False,模型将返回原始隐藏状态。
2.3.2 pipeline对象使用参数
- images(
str、或)——管道处理三种类型的图像List[str]:PIL.ImageList[PIL.Image]
- 包含指向图像的 http 链接的字符串
- 包含图像本地路径的字符串
- 直接在 PIL 中加载的图像
管道可以接受单张图片或一批图片,然后必须以字符串形式传递。一批图片必须全部采用相同的格式:全部为 http 链接、全部为本地路径或全部为 PIL 图片。
- timeout(可选
float,默认为 None)— 等待从网络获取图像的最长时间(以秒为单位)。如果为 None,则不使用超时,并且调用可能会永远阻塞。
2.4 pipeline实战
基于pipeline的图片特征抽取(image-feature-extraction)任务,采用google/vit-base-patch16-224进行文本特征抽取,代码如下:
import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"from transformers import pipeline
feature_extractor = pipeline("feature-extraction", framework="pt", model="facebook/bart-base")
text = "Transformers is an awesome library!"output=feature_extractor(text,return_tensors = "pt")
print(output)
执行后,自动下载模型文件并进行识别:

2.5 模型排名
在huggingface上,我们将图片特征抽取(image-feature-extraction)模型按下载量从高到低排序,总计400个模型,vit排名第一。
三、总结
本文对transformers之pipeline的图片特征抽取(image-feature-extraction)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用多模态中的图片特征抽取(image-feature-extraction)模型。
期待您的3连+关注,如何还有时间,欢迎阅读我的其他文章:
《Transformers-Pipeline概述》
【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用
《Transformers-Pipeline 第一章:音频(Audio)篇》
【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)
【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)
【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)
【人工智能】Transformers之Pipeline(四):零样本音频分类(zero-shot-audio-classification)
《Transformers-Pipeline 第二章:计算机视觉(CV)篇》
【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)
【人工智能】Transformers之Pipeline(六):图像分类(image-classification)
【人工智能】Transformers之Pipeline(七):图像分割(image-segmentation)
【人工智能】Transformers之Pipeline(八):图生图(image-to-image)
【人工智能】Transformers之Pipeline(九):物体检测(object-detection)
【人工智能】Transformers之Pipeline(十):视频分类(video-classification)
【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)
【人工智能】Transformers之Pipeline(十二):零样本物体检测(zero-shot-object-detection)
《Transformers-Pipeline 第三章:自然语言处理(NLP)篇》
【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)
【人工智能】Transformers之Pipeline(十四):问答(question-answering)
【人工智能】Transformers之Pipeline(十五):总结(summarization)
【人工智能】Transformers之Pipeline(十六):表格问答(table-question-answering)
【人工智能】Transformers之Pipeline(十七):文本分类(text-classification)
【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)
【人工智能】Transformers之Pipeline(十九):文生文(text2text-generation)
【人工智能】Transformers之Pipeline(二十):令牌分类(token-classification)
【人工智能】Transformers之Pipeline(二十一):翻译(translation)
【人工智能】Transformers之Pipeline(二十二):零样本文本分类(zero-shot-classification)
《Transformers-Pipeline 第四章:多模态(Multimodal)篇》
【人工智能】Transformers之Pipeline(二十三):文档问答(document-question-answering)
【人工智能】Transformers之Pipeline(二十四):特征抽取(feature-extraction)
【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)
【人工智能】Transformers之Pipeline(二十六):图片转文本(image-to-text)
【人工智能】Transformers之Pipeline(二十七):掩码生成(mask-generation)
【人工智能】Transformers之Pipeline(二十八):视觉问答(visual-question-answering)
相关文章:
【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)
目录 一、引言 二、图片特征抽取(image-feature-extraction) 2.1 概述 2.2 google/ViT 2.3 pipeline参数 2.3.1 pipeline对象实例化参数 2.3.2 pipeline对象使用参数 2.4 pipeline实战 2.5 模型排名 三、总结 一、引言 pi…...
podman 源码 5.3.1编译
1. 构建环境 在麒麟V10服务器操作系统上构建:Kylin-Server-V10-GFB-Release-2204-Build03-ARM64.iso。由于只是编译 podman 源码,没必要特地在物理机或服务上安装一个这样的操作系统,故采用在虚拟机里验证。 2. 安装依赖 参考资料…...
矩阵重新排列——rot90函数
通过 r o t 90 rot90 rot90函数可以将矩阵进行旋转 用法: r o t 90 ( a , k ) rot90(a,k) rot90(a,k)将矩阵 a a a按逆时针方向旋转 k 9 0 ∘ k\times90^\circ k90∘...
Leetcode 51 N Queens Leetcode N Queens II
题意 给定一个数字 n n n,形成n*n的棋盘,棋盘上放n个皇后,确保皇后之间不会相互吃(皇后可以直线吃,斜线吃) 链接 https://leetcode.com/problems/n-queens/description/ 思考 这道题只能暴力枚举所有的…...
0.查找命令
目录 🍉 find - 查找文件 🍇 grep 🍓 which 🍈locate 总结: 🍉 find - 查找文件 # 语法 # find [搜索范围] [选项] # 选项 # -name<查询方式> 按照指定的文件名查找模式查找文件 # …...
HarmonyOS-初级(一)
文章目录 初级核心技术理念函数的声明和使用类的声明和使用接口声明和使用声明式UI的特征 🏡作者主页:点击! 🤖HarmonyOS专栏:点击! ⏰️创作时间:2024年11月28日12点50分 初级 HAP可以分为静…...
Oracle 11gR2 坏块修复实例一则
背景 前段时间在 Oracle 11gR2 数据库中发现了坏块问题。环境是 64 位 Linux 平台。本文将详细介绍如何使用 DBMS_REPAIR 进行在线修复,当然也可以基于备份和 RMAN 的修复方法这里暂时不做介绍。 发现坏块 1. 从 alert.log 中发现错误 在 alert.log 文件中发现了…...
解决FinalShell 连接virtual box安装的Linux centos/7系统 一直让输入密码,输入什么密码都没用
问题描述: virtual box安装的Linux centos/7系统默认只允许ssh登录方式,需要配置允许账号密码登录 先登录root账号(一定要是root):初始密码为vagrant su 修改ssh配置文件: vi /etc/ssh/sshd_config 修改…...
华为E9000刀箱(HWE9000V2)服务器硬件监控指标解读
随着数据中心规模的不断扩大,服务器的稳定性和可靠性变得尤为重要。华为E9000刀箱(HWE9000V2)作为一款高性能的服务器设备,其硬件状态的实时监控对于保障业务的连续性和系统的稳定运行至关重要。 监控易作为一款专业的IT基础设施监…...
Python基础学习-12匿名函数lambda和map、filter
目录 1、匿名函数: lambda 2、Lambda的参数类型 3、map、 filter 4、本节总结 1、匿名函数: lambda 1)语法: lambda arg1, arg2, …, argN : expression using arg 2) lambda是一个表达式,而不是一个语…...
民安:助力提升城市安全水平
随着城市化进程的加速,平安城市的创建成为了社会治理的重要议题。为了解公众对平安城市创建的看法和评价,为提升城市安全水平提供参考,近期某市委托民安智库专业市场调查公司开展了一次安全感满意度调查。 本次调查围绕公共安全、个人安全、…...
Apache Zeppelin:一个基于Web的大数据可视化分析平台
今天给大家推荐一下 Apache Zeppelin,它是一个基于 Web 的交互式数据接入、数据分析、数据可视化以及协作文档 Notebook,类似于 Jupyter Notebook。 Apache Zeppelin 支持使用 SQL、Java、Scala、Python、R 等编程语言进行数据处理和分析,同时…...
「Qt Widget中文示例指南」如何为窗口实现流程布局?(二)
Qt 是目前最先进、最完整的跨平台C开发工具。它不仅完全实现了一次编写,所有平台无差别运行,更提供了几乎所有开发过程中需要用到的工具。如今,Qt已被运用于超过70个行业、数千家企业,支持数百万设备及应用。 本文将展示如何为不…...
【C语言篇】探索 C 语言结构体:从基础语法到数据组织的初体验
我的个人主页 我的专栏:C语言,希望能帮助到大家!!!点赞❤ 收藏❤ 目录 什么是结构体结构体的定义与使用结构体内存布局嵌套结构体与指针结构体数组的操作结构体与函数结构体内存对齐机制位域与结构体的结合动态内存分…...
linux下USB设备状态查询
linux下USB设备状态查询 linux下USB设备状态查询 在buildroot RK3568平台上调试USB视频采集时发现,USB设备经常性断开,为发现其断开的规律,编写脚本记录其断开的时间 linux下USB设备状态查询 #周期性查询 USB设备 cat > /usr/bin/usbenq…...
鼠标前进后退键改双击,键盘映射(AutoHotkey)
初衷: 1.大部分鼠标为不可自定义按键,可以自定义的又很贵。 鼠标左键是双击是很频类很高的操作,鼠标前进/后退按键个人感觉使用频率很低,因此把鼠标前进/后退改为双击还是很合适的。 2.有些短款的键盘没有Home或End键,…...
ubuntu服务器睡眠命令
在 Ubuntu 服务器中,通常不会启用系统睡眠(即 suspend)模式,因为服务器通常需要保持持续运行以提供服务。但如果你希望让 Ubuntu 服务器进入睡眠状态,你可以使用以下命令: 1. 让系统进入休眠(S…...
尚硅谷学习笔记——Java设计模式(一)设计模式七大原则
一、介绍 在软件工程中,设计模式(design pattern)是对软件设计中普遍存在(反复出现)的各种问题,提出的解决方案。我们希望我们的软件能够实现复用性、高稳定性、扩展性、维护性、代码重用性,所以…...
Flink——进行数据转换时,报:Recovery is suppressed by NoRestartBackoffTimeStrategy
热词统计案例: 用flink中的窗口函数(apply)读取kafka中数据,并对热词进行统计。 apply:全量聚合函数,指在窗口触发的时候才会对窗口内的所有数据进行一次计算(等窗口的数据到齐,才开始进行聚合…...
技能之发布自己的依赖到npm上
目录 开始 解决 步骤一: 步骤二: 步骤三: 运用 一直以为自己的项目在github上有了(之传了github)就可以进行npm install下载,有没有和我一样萌萌的同学。没事,萌萌乎乎的不犯罪。 偶然的机…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...
书籍“之“字形打印矩阵(8)0609
题目 给定一个矩阵matrix,按照"之"字形的方式打印这个矩阵,例如: 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为:1,…...
如何把工业通信协议转换成http websocket
1.现状 工业通信协议多数工作在边缘设备上,比如:PLC、IOT盒子等。上层业务系统需要根据不同的工业协议做对应开发,当设备上用的是modbus从站时,采集设备数据需要开发modbus主站;当设备上用的是西门子PN协议时…...
