当前位置: 首页 > news >正文

TsingtaoAI具身智能高校实训方案通过华为昇腾技术认证

日前,TsingtaoAI推出的“具身智能高校实训解决方案-从AI大模型+机器人到通用具身智能”基于华为技术有限公司AI框架昇思MindSpore,完成并通过昇腾相互兼容性技术认证。

TsingtaoAI&华为昇腾联合解决方案

本项目“具身智能高校实训解决方案”以实现高校内的AI大模型与机器人技术结合为目标,提供从多模态感知到任务执行及反馈优化的完整架构。基于华为昇腾AI基础设施及昇思MindSpore框架,项目在技术深度、应用广度和创新性方面具有显著优势。架构包含以下四层逻辑模块:

1. 多模态感知层

该层通过融合语音、视觉及触觉数据,实现对物理环境的全面感知:

  • 语音感知:利用如Whisper等自然语言处理模型将语音转化为文本,并解析指令意图。
  • 视觉感知:采用深度相机构建三维环境模型,实现物体识别与空间定位,为任务提供视觉输入。
  • 触觉感知:机械臂末端搭载力矩传感器,实时反馈抓取力,确保动作的安全性与精确性。

2. 多模态理解与决策层

  • 多模态融合:通过华为昇思框架整合语音、视觉及触觉信息,利用如Yi-Large、CogVLM2等大语言模型解析复杂指令(如“将蓝色圆柱放在红色方块旁”),生成可执行的任务规划。
  • 语义理解与推理:多模态信息经深度融合后,形成任务语义与目标坐标描述,指导机械臂操作。

3. 行动执行层

该层完成从指令解析到物理任务执行的闭环:

  • 任务规划与路径生成:通过逆运动学算法将多模态决策转化为机械臂的关节运动指令,利用高精度六自由度机械臂完成任务。
  • 实时调整:结合触觉和视觉反馈,实时优化路径与动作参数,提升任务完成效率与稳定性。

4. 学习反馈层

此层致力于持续提升系统性能:

  • 强化学习与仿真优化:在仿真环境中,通过深度强化学习优化执行策略,使系统不断进化以适应复杂动态环境。
  • 教学数据记录与分析:记录实训中的任务数据,供学生复盘并设计优化方案。

技术创新与应用场景

  1. 技术创新:以大语言模型、3D视觉和多模态感知为核心,结合华为昇腾的高性能AI计算平台,提升机械臂在感知、理解和执行方面的能力。
  2. 应用场景:通过任务分解和多模态数据处理,培养学生对多模态感知和自然语言指令执行的理解,支持本科及研究生在智能机器人、自动化、人工智能等方向的实践教学。

该方案不仅推动了高校智能教育体系的现代化升级,更为行业具身智能技术提供了标准化的实训范式。

相关文章:

TsingtaoAI具身智能高校实训方案通过华为昇腾技术认证

日前,TsingtaoAI推出的“具身智能高校实训解决方案-从AI大模型机器人到通用具身智能”基于华为技术有限公司AI框架昇思MindSpore,完成并通过昇腾相互兼容性技术认证。 TsingtaoAI&华为昇腾联合解决方案 本项目“具身智能高校实训解决方案”以实现高…...

【Linux】线程池设计 + 策略模式

🌈 个人主页:Zfox_ 🔥 系列专栏:Linux 目录 一:🔥 线程池 1-1 ⽇志与策略模式1-2 线程池设计1-3 线程安全的单例模式1-3-1 什么是单例模式1-3-2 单例模式的特点1-3-3 饿汉实现⽅式和懒汉实现⽅式1-3-4 饿汉…...

网络原理(一):应用层自定义协议的信息组织格式 HTTP 前置知识

目录 1. 应用层 2. 自定义协议 2.1 根据需求 > 明确传输信息 2.2 约定好信息组织的格式 2.2.1 行文本 2.2.2 xml 2.2.3 json 2.2.4 protobuf 3. HTTP 协议 3.1 特点 4. 抓包工具 1. 应用层 在前面的博客中, 我们了解了 TCP/IP 五层协议模型: 应用层传输层网络层…...

Python-链表数据结构学习(1)

一、什么是链表数据? 链表是一种通过指针串联在一起的数据结构,每个节点由2部分组成,一个是数据域,一个是指针域(存放下一个节点的指针)。最后一个节点的指针域指向null(空指针的意思&#xff0…...

性能优化经验:关闭 SWAP 分区

关闭 SWAP 分区,特别是在性能敏感场景(如 Elasticsearch 服务)中,主要与 SWAP 的工作机制和对应用性能的影响有关。以下是详细原因: 1. SWAP 的工作机制导致高延迟 SWAP 是什么: SWAP 分区是系统将物理内存…...

SpringBoot小知识(2):日志

日志是开发项目中非常重要的一个环节,它是程序员在检查程序运行的手段之一。 1.日志的基础操作 1.1 日志的作用 编程期调试代码运营期记录信息: * 记录日常运营重要信息(峰值流量、平均响应时长……) * 记录应用报错信息(错误堆栈) * 记录运维过程数据(…...

java虚拟机——jvm是怎么去找垃圾对象的

JVM(Java虚拟机)通过特定的算法和机制来查找和识别垃圾对象,以便进行垃圾回收。以下是JVM查找垃圾对象的主要方法和步骤: 一、可达性分析法 JVM使用可达性分析法来识别垃圾对象。这种方法从一组称为“GC Roots”的对象作为起始点…...

Macos远程连接Linux桌面教程;Ubuntu配置远程桌面;Mac端远程登陆Linux桌面;可能出现的问题

文章目录 1. Ubuntu配置远程桌面2. Mac端远程登陆Linux桌面3. 可能出现的问题1.您用来登录计算机的密码与登录密钥环里的密码不再匹配2. 找不到org->gnome->desktop->remote-access 1. Ubuntu配置远程桌面 打开设置->共享->屏幕共享。勾选允许连接控制屏幕&…...

hadoop_HA高可用

秒懂HA HA概述HDFS-HA工作机制工作要点元数据同步参数配置手动故障转移自动故障转移工作机制相关命令 YARN-HA参数配置自动故障转移机制相关命令 附录Zookeeper详解 HA概述 H(high)A(avilable): 高可用,意味着必须有容错机制,不能因为集群故障…...

【MySQL】MySQL中的函数之JSON_ARRAY_APPEND

在 MySQL 8.0 及更高版本中,JSON_ARRAY_APPEND() 函数用于在 JSON 数组的指定位置追加一个或多个值。这个函数非常有用,特别是在你需要在 JSON 数组的末尾或特定位置添加新的元素时。 基本语法 JSON_ARRAY_APPEND(json_doc, path, val[, path, val] ..…...

torch.is_nonzero(input)

torch.is_nonzero(input) input: 输入张量 若输入是 不等于零的单元素张量 则返回True,否则返回False 不等于零的单元素张量:torch.tensor([0.]) 或 torch.tensor([0]) 或 torch.tensor([False])单元素张量: 只有一个数 的张量 import torch print(t…...

文本搜索程序(Qt)

头文件 #ifndef TEXTFINDER_H #define TEXTFINDER_H#include <QWidget> #include <QFileDialog> #include <QFile> #include <QTextEdit> #include <QLineEdit> #include <QTextStream> #include <QPushButton> #include <QMess…...

使用 Python 剪辑视频的播放速度

要使用 Python 调整视频的播放速度&#xff0c;可以利用 moviepy 库中的 fx&#xff08;特效&#xff09;模块来实现这一功能。通过 moviepy.editor 中的 VideoFileClip 类和 fx.speedx 函数&#xff0c;可以轻松地调整视频的播放速度。 安装 moviepy 首先&#xff0c;确保已…...

深入理解计算机系统,源码到可执行文件翻译过程:预处理、编译,汇编和链接

1.前言 从一个高级语言到可执行程序&#xff0c;要经过预处理、编译&#xff0c;汇编和链接四个过程。大家可以思考下&#xff0c;为什么要有这样的过程&#xff1f; 我们学习计算机之处&#xff0c;就应该了解到&#xff0c;计算机能够识别的只有二进制语言&#xff08;这是…...

Linux开发者的CI/CD(11)jenkins变量

文章目录 1. **环境变量 (Environment Variables)**常见的环境变量:示例:2. **构建参数 (Build Parameters)**常见的构建参数类型:示例:3 **在 `stages` 块内定义局部变量**示例:使用 `script` 步骤定义局部变量4 变量引用陷阱在 Jenkins 中,变量是自动化流程中非常重要的…...

深度学习视频编解码开源项目介绍【持续更新】

DVC (Deep Video Compression) 介绍&#xff1a;DVC (Deep Video Compression) 是一个基于深度学习的视频压缩框架&#xff0c;它的目标是通过深度神经网络来提高视频编码的效率&#xff0c;并降低比特率&#xff0c;同时尽可能保持视频质量。DVC 是一个端到端的神经网络模型&…...

Canva迁移策略深度解析:应对每日5000万素材增长,从MySQL到DynamoDB的蜕变

随着数字化设计的蓬勃发展&#xff0c;Canva作为一款备受欢迎的在线设计平台&#xff0c;面临着日益增长的用户生成内容挑战。每天&#xff0c;平台上新增的素材数量高达5000万&#xff0c;这对数据库系统提出了前所未有的要求。为了应对这一挑战&#xff0c;Canva决定对其数据…...

nacos常见面试题(2024)

nacos永久实例与临时实例区别 nacos实例有2种&#xff0c;分别为临时实例&#xff08;一般业务服务是临时的&#xff09;和永久实例&#xff08;如mysql、redis这种运维服务需要实时看到状态的设置为永久实例&#xff09;。 临时实例只会缓存到服务注册列表中&#xff0c;下线…...

68000汇编实战01-编程基础

文章目录 简介产生背景应用领域 语言学习EASy68K帮助文档IDE使用 编程语言commentslabels开始标签指令标签位置标签 opcode 操作码常用操作码数据传送算术运算逻辑运算控制流分支跳转地址跳转子程序跳转 位操作比较堆栈操作 IO操作码其他操作码 directives 指令DC指令EQU 指令S…...

你的网站真的安全吗?如何防止网站被攻击?

你的网站被黑客攻击过&#xff0c;很可能不止一次&#xff01; 这可不是危言耸听。微软最近发布了《2024 年微软数字防御报告》&#xff0c;报告中写到&#xff1a;“Windows 用户每天面临超过 6 亿次网络犯罪和国家级别的攻击&#xff0c;涵盖了从勒索软件到网络钓鱼再到身份…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...