当前位置: 首页 > news >正文

力扣第 77 题 组合

题目描述

给定两个整数 nk,返回范围 [1, n] 中所有可能的 k 个数的组合。

  • 你可以按任意顺序返回答案。

示例

示例 1

输入

n = 4, k = 2

输出

[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
示例 2

输入

n = 1, k = 1

输出

[[1]]

解题思路

1. 回溯法

回溯法是解决组合问题的经典方法,通过递归构建所有可能的组合。

算法步骤

  1. 定义一个函数 backtrack(start, path),其中 start 表示搜索的起点,path 是当前构建的组合。
  2. 如果当前组合 path 的长度等于 k,将其加入结果集中。
  3. 遍历从 startn 的所有数字:
    • 将当前数字加入组合。
    • 递归构建下一个数字的组合。
    • 回溯,移除当前数字。

回溯法的时间复杂度是 O(C(n, k)),其中 C ( n , k ) = n ! k ! ( n − k ) ! C(n, k) = \frac{n!}{k!(n-k)!} C(n,k)=k!(nk)!n!


实现代码

C语言实现
#include <stdio.h>
#include <stdlib.h>// 动态数组结构
typedef struct {int** data;int size;int capacity;
} Array;void initArray(Array* arr, int capacity) {arr->data = (int**)malloc(sizeof(int*) * capacity);arr->size = 0;arr->capacity = capacity;
}void addToArray(Array* arr, int* combination, int k) {if (arr->size == arr->capacity) {arr->capacity *= 2;arr->data = (int**)realloc(arr->data, sizeof(int*) * arr->capacity);}arr->data[arr->size] = (int*)malloc(sizeof(int) * k);for (int i = 0; i < k; i++) {arr->data[arr->size][i] = combination[i];}arr->size++;
}void backtrack(int n, int k, int start, int* combination, int combSize, Array* result) {if (combSize == k) {addToArray(result, combination, k);return;}for (int i = start; i <= n; i++) {combination[combSize] = i;backtrack(n, k, i + 1, combination, combSize + 1, result);}
}int** combine(int n, int k, int* returnSize, int** returnColumnSizes) {Array result;initArray(&result, 16);int* combination = (int*)malloc(sizeof(int) * k);backtrack(n, k, 1, combination, 0, &result);*returnSize = result.size;*returnColumnSizes = (int*)malloc(sizeof(int) * result.size);for (int i = 0; i < result.size; i++) {(*returnColumnSizes)[i] = k;}free(combination);return result.data;
}int main() {int n = 4, k = 2;int returnSize;int* returnColumnSizes;int** combinations = combine(n, k, &returnSize, &returnColumnSizes);printf("Combinations:\n");for (int i = 0; i < returnSize; i++) {printf("[");for (int j = 0; j < returnColumnSizes[i]; j++) {printf("%d", combinations[i][j]);if (j < returnColumnSizes[i] - 1) printf(", ");}printf("]\n");free(combinations[i]); // 释放每个组合的内存}free(combinations); // 释放结果数组的内存free(returnColumnSizes); // 释放列大小数组的内存return 0;
}

代码解析

  1. 动态数组

    • 使用 Array 结构来动态存储组合结果。
    • initArray 初始化数组,addToArray 动态增加组合。
  2. 回溯函数

    • backtrack 函数递归构建所有可能的组合。
    • 使用 start 控制数字范围,避免重复组合。
  3. 主函数

    • combine 是主函数,调用回溯并返回结果。
    • 动态分配 returnColumnSizes 以存储每个组合的列数。
  4. 内存管理

    • 在主函数中释放动态分配的内存,避免内存泄漏。

时间复杂度和空间复杂度

  • 时间复杂度

    • 回溯构造所有组合的复杂度是 O(C(n, k)),即 n ! k ! ( n − k ) ! \frac{n!}{k!(n-k)!} k!(nk)!n!
  • 空间复杂度

    • 临时数组 combination 的空间复杂度为 O(k)
    • 存储结果的空间复杂度为 O ( C ( n , k ) ⋅ k ) O(C(n, k) \cdot k) O(C(n,k)k)

相关文章:

力扣第 77 题 组合

题目描述 给定两个整数 n 和 k&#xff0c;返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以按任意顺序返回答案。 示例 示例 1 输入&#xff1a; n 4, k 2输出&#xff1a; [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]示例 2 输入&#xff1a; n 1, k …...

(超详细图文)PLSQL Developer 配置连接远程 Oracle 服务

1、下载配置文件 &#xff08;超详细图文详情&#xff09;Navicat 配置连接 Oracle-CSDN博客 将下载的文件解压到单独文件夹&#xff0c;如&#xff1a;D:\App\App_Java\Oracle\instantclient-basic-windows.x64-19.25.0.0.0dbru 2、配置 打开 PLSQL Developer&#xff0c;登…...

元器件选型与参数13 电源的分类-线性电源参数 RT9013 AMS1117 PCB布局布线

目录 一、线性电源 1、重要参数 2、线性电源效率一定低吗 3、线性电源并联扩流 4、常见电路 RT9013-LDO AMS1117-xx-LDO 5、布局布线 6、外置输入与电池供电 7、单片机控制其他模组供电实现低功耗 二、开关电源与线性电源配合 1、高效率与低噪声 DC-DC电源大致分为…...

RHEL7+Oracle11.2 RAC集群-多路径(multipath+udev)安装步骤

RHEL7Oracle11.2RAC集群-多路径&#xff08;multipathudev&#xff09;安装 配置虚拟存储 使用StarWind Management Console软件&#xff0c;配置存储 dggrid1: 1g*3 Dggrid2: 1g*3 Dgsystem: 5g*1 系统表空间&#xff0c;临时表空间&#xff0c;UNDO&#xff0c;参数文件…...

每日速记10道java面试题03

其他资料 每日速记10道java面试题01-CSDN博客 每日速记10道java面试题02-CSDN博客 目录 一、你使用过java的反射机制吗&#xff1f;如何应用反射&#xff1f; 二、什么是泛型&#xff1f;泛型的作用是什么&#xff1f; 三、java的泛型擦除是什么&#xff1f; 四、Java 中…...

Vue 3 的双向绑定原理

Vue 3 的双向绑定原理是基于 响应式系统 和 数据劫持 技术来实现的。在 Vue 3 中&#xff0c;双向绑定通常是通过 v-model 指令来完成的&#xff0c;它本质上是数据的双向同步&#xff1a;当数据改变时&#xff0c;视图自动更新&#xff0c;反之&#xff0c;视图的修改也会更新…...

如何使用 Chrome 无痕浏览模式访问网站?

无痕浏览&#xff08;Incognito Mode&#xff09;是 Google Chrome 浏览器提供的一种隐私保护功能&#xff0c;它允许用户在一个独立的会话中浏览网页&#xff0c;而不会记录用户的浏览历史、下载历史、表单数据等。这对于希望保护个人隐私或进行临时性匿名浏览的用户来说非常有…...

Idea 2024.3 突然出现点击run 运行没有反应,且没有任何提示。

写这篇文章的目的是为了提供一个新的解决思路&#xff0c;因为存在同病不同原因。 如果你进行了1. 检查运行配置 (Run Configuration) 2. 清理和重建项目 3. 清除缓存并重启 IDEA 4.排除kotlin 5.重装idea等等操作之后仍然没有解决&#xff0c;可以试着按一下步骤进行解决。 检…...

【小白学机器学习36】关于独立概率,联合概率,交叉概率,交叉概率和,总概率等 概念辨析的例子

目录 1 先说结论 2 联合概率 3 边缘概率 4 (行/列)边缘概率的和 总概率1 5 条件概率 5.1 条件概率的除法公式 5.2 条件概率和联合概率区别 1 先说结论 关于独立概率&#xff0c;联合概率&#xff0c;交叉概率&#xff0c;交叉概率和&#xff0c;总概率 类型含义 …...

Spring Boot 项目——分层架构

在创建一个 Spring Boot 项目时&#xff0c;为了提高代码的可维护性、可扩展性和清晰度&#xff0c;通常会按照一定的分层架构进行设计。常见的分层架构包括以下几层&#xff1a; 1. Controller 层&#xff08;Web 层&#xff09; 作用&#xff1a;接收用户请求&#xff0c;并…...

wordpress网站首页底部栏显示网站备案信息

一、页脚文件footer.php 例如&#xff0c;wordpress主题使用的是simple-life主题&#xff0c;服务器IP为192.168.68.89,在wordpress主题文件中有个页脚文件footer.php&#xff0c;这是一个包含网站页脚代码的文件。 footer.php 路径如下&#xff1a; /www/wwwroot/192.168.68…...

python面向对象编程练习

学生成绩管理系统 定义一个Student类&#xff0c;包括属性&#xff08;姓名、成绩&#xff09;和方法&#xff08;设置成绩、获取成绩、计算平均成绩&#xff09;。 实例化多个学生对象并调用方法。 功能说明&#xff1a; Student 类&#xff1a; init(self, name)&#xff1a;…...

OpenCV_Code_LOG

孔洞填充 void fillHole(const Mat srcBw, Mat &dstBw) {Size m_Size srcBw.size();Mat TempMat::zeros(m_Size.height2,m_Size.width2,srcBw.type());//延展图像srcBw.copyTo(Temp(Range(1, m_Size.height 1), Range(1, m_Size.width 1)));cv::floodFill(Temp, Point(…...

力扣第 74 题是 搜索二维矩阵

题目描述 给定一个 m x n 的矩阵 matrix 和一个目标值 target&#xff0c;请你编写一个函数来判断目标值 target 是否在矩阵中。 每行的元素按升序排列。每列的元素按升序排列。 示例 1 输入&#xff1a; matrix [[1, 4, 7, 11],[2, 5, 8, 12],[3, 6, 9, 16],[10, 13, 14…...

[极客大挑战 2019]BabySQL--详细解析

信息搜集 进入界面&#xff1a; 输入用户名为admin&#xff0c;密码随便输一个&#xff1a; 发现是GET传参&#xff0c;有username和password两个传参点。 我们测试一下password点位能不能注入&#xff1a; 单引号闭合报错&#xff0c;根据报错信息&#xff0c;我们可以判断…...

实现Linux平台自定义协议族

一 简介 我们常常在Linux系统中编写socket接收TCP/UDP协议数据&#xff0c;大家有没有想过它怎么实现的&#xff0c;如果我们要实现socket接收自定义的协议数据又该怎么做呢&#xff1f;带着这个疑问&#xff0c;我们一起往下看吧~~ 二 Linux内核函数简介 在Linux系统中要想…...

RL78/G15 Fast Prototyping Board Arduino IDE 平台开发过程

这是一篇基于RL78/G15 Fast Prototyping Board的Arduino IDE开发记录 RL78/G15 Fast Prototyping Board硬件简介&#xff08;背景&#xff09;基础测试&#xff08;方法说明/操作说明&#xff09;开发环境搭建&#xff08;方法说明/操作说明代码结果&#xff09;Arduino IDE RL…...

YOLOv11 NCNN安卓部署

YOLOv11 NCNN安卓部署 前言 yolov11 NCNN安卓部署 目前的帧率可以稳定在20帧左右&#xff0c;下面是这个项目的github地址&#xff1a;https://github.com/gaoxumustwin/ncnn-android-yolov11 上面的检测精度很低时因为这个模型只训练了5个epoch&#xff0c;使用3090训练一个…...

对载入的3dtiles进行旋转、平移和缩放变换。

使用 params: {tx: 129.75845, //模型中心X轴坐标&#xff08;经度&#xff0c;单位&#xff1a;十进制度&#xff09;//小左ty: 46.6839, //模型中心Y轴坐标&#xff08;纬度&#xff0c;单位&#xff1a;十进制度&#xff09;//小下tz: 28, //模型中心Z轴坐标&#xff08;高…...

Rust个人认为将抢占C和C++市场,逐渐成为主流的开发语言

本人使用C开发8年、C#开发15年、中间使用JAVA开发过项目、后期在学习过程中发现了Rust语言说它是最安全的语言&#xff0c;能够解决C、C的痛点、于是抽出一部分时间网上买书&#xff0c;看网上资料进行学习&#xff0c;这一学习起来发现和其它语言比较起来&#xff0c;在编码的…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...