C++ - 二叉搜索树讲解
二叉搜索树概念和定义
二叉搜索树是一个二叉树,其中每个节点的值都满足以下条件:
- 节点的左子树只包含小于当前节点值的节点。
- 节点的右子树只包含大于当前节点值的节点。
- 左右子树也必须是二叉搜索树。
二叉树搜索树性质
从上面的二叉搜索树定义中可以了解到, 二叉搜索树是有序的.
通过中序遍历, 会发现这是个有序的序列, 升序或降序 (自己决定)
二叉搜索树只支持增删查, 不支持该.
因为如果随意修改二叉搜索树节点的值, 那么就有可能会导致, 这棵树不再满足二叉搜索树的条件.
二叉搜索树的查找的时间复杂度:
最好情况: O(log n)
最坏情况: O(N)
当二叉搜索树是以上的情况时, 就变成了链表, 那么时间复杂度就是 O(N).
二叉搜索树中是不能出现相同元素的.
二叉搜索树模拟实现
创建一个二叉搜索树节点类
template<class T>
struct SearchTreeNode
{T _data; // 存储数据SearchTreeNode<T>* _leftchile; // 指向左孩子SearchTreeNode<T>* _rightchild; // 指向右孩子SearchTreeNode(const T& data):_data(data),_leftchile(nullptr),_rightchild(nullptr){}
};
二叉搜索树类创建
template<class T>
class SearchTree
{typedef SearchTreeNode<T> SearchTreeNode;
public:bool insert(const T& data){}bool erase(const T& data){}bool find(const T& data){}
private:SearchTreeNode* _root;
};
二叉搜索树的插入
二叉搜索树的插入非常简单.
从根节点开始, 如果插入的值小于节点值, 那么向左走,
如果插入的值大于节点值, 那么向右走,
如果值已存在, 那么直接返回 false.
bool insert(const T& data)
{SearchTreeNode* node = new SearchTreeNode(data);if (_root == nullptr) // 如果 _root 为空, 那么也就需要更新 _root 节点{_root = node;return true;}else{SearchTreeNode* prev = nullptr; // 记录插入位置的父节点SearchTreeNode* cur = _root; // 查找插入位置while (cur != nullptr){if (cur->_data == data) // 如果要插入的数据已存在, 直接返回{return false;}if (data < cur->_data) // 要插入的数据小于节点数据, 向左走{prev = cur;cur = cur->_leftchile;}else // 要插入的数据大于节点数据, 向右走{prev = cur;cur = cur->_rightchild;}}if (data < prev->_data) // 判断要插入的位置是左边还是右边{prev->_leftchile = node;}else{prev->_rightchild = node;}return true;}
}
二叉搜索树的删除
1. 被删除的节点最多只有一个孩子
1) 被删除的节点是叶子节点, 没有孩子
这种情况下, 直接将这个节点删除即可
2) 被删除的节点只有左孩子
将本节点删除后, 将节点的左孩子连接到本节点的父节点上
3) 被删除的节点只有右孩子
和只有左孩子相同, 删除本节点, 右孩子连接到本节点的父节点上
void erase(const T& data)
{SearchTreeNode* prev = nullptr;SearchTreeNode* cur = _root;while (cur != nullptr) // 先查找是否存在这个值{if (data == cur->_data){break;}prev = cur;if (data < cur->_data){cur = cur->_leftchile;}else{cur = cur->_rightchild;}}if (cur == nullptr) // 不存在这个值, 直接返回{return;}if (cur->_leftchile == nullptr || cur->_rightchild == nullptr) // 存在这个节点, 这个节点没有孩子, 或者只有一个孩子{if (cur->_leftchile == nullptr) // 只有右孩子{if (_root == cur) // 如果要删除的节点就是 _root, 更新 _root{_root = cur->_rightchild;}else{if (prev->_leftchile = cur) // 判断要连接再父节点的哪边{prev->_leftchile = cur->_rightchild;}else{prev->_rightchild = cur->_rightchild;}}}else{if (_root == cur){_root = cur->_leftchile;}else{if (prev->_leftchile = cur){prev->_leftchile = cur->_leftchile;}else{prev->_rightchild = cur->_leftchile;}}}delete cur;}
}
2. 被删除的节点有两个孩子
我们不直接删除这个节点, 使用和 堆 删除节点差不多的方法.
我们将要删除的这个节点和一个最多只有一个孩子的节点进行交换
然后删除那个交换后的值.
那么这个交换的节点怎么选择.
1. 本节点右子树中的最小值的那个节点 (即右子树的最左节点)
2. 本节点左子树中的最大值的那个节点 (左子树的最右节点)
这两个选择方法, 选择出来的要交换的节点的值, 都是最接近 本节点值的 节点.
找到这个节点之后, 交换 cur 和 child 的值, 然后删除 child 节点即可.
void erase(const T& data)
{SearchTreeNode* prev = nullptr;SearchTreeNode* cur = _root;while (cur != nullptr) // 先查找是否存在这个值{if (data == cur->_data){break;}prev = cur;if (data < cur->_data){cur = cur->_leftchile;}else{cur = cur->_rightchild;}}if (cur == nullptr) // 不存在这个值, 直接返回{return;}if (cur->_leftchile == nullptr || cur->_rightchild == nullptr) // 存在这个节点, 这个节点没有孩子, 或者只有一个孩子{if (cur->_leftchile == nullptr){if (_root == cur){_root = cur->_rightchild;}else{if (prev->_leftchile = cur){prev->_leftchile = cur->_rightchild;}else{prev->_rightchild = cur->_rightchild;}}}else{if (_root == cur){_root = cur->_leftchile;}else{if (prev->_leftchile = cur){prev->_leftchile = cur->_leftchile;}else{prev->_rightchild = cur->_leftchile;}}}delete cur;}else // 这个节点有两个孩子, 上半部分代码 和 文章上面的代码是一样的{prev = cur;SearchTreeNode* child = cur->_rightchild; // 要删除的节点while (child->_leftchile != nullptr) // 查找符合要求的节点{prev = child;child = child->_leftchile;}cur->_data = child->_data; // 交换数据if (child->_rightchild == nullptr) // child 是叶子节点{if (prev == cur) // 可以看下图演示{prev->_rightchild = nullptr;}else{prev->_leftchile = nullptr;}}else // child 有右子树, 这不可能有左子树, 因为这里找的就是最左节点{if (prev == cur){prev->_rightchild = cur->_rightchild;}else{prev->_leftchile = child->_rightchild;}}delete child;}
}
那么另一种方法, 和这种方法差不多, 会一种就会另一种.
去本节点左子树中, 查找最右的节点.
至于查找功能, 无论是再插入还是删除中, 都有这部分操作.
相关文章:

C++ - 二叉搜索树讲解
二叉搜索树概念和定义 二叉搜索树是一个二叉树,其中每个节点的值都满足以下条件: 节点的左子树只包含小于当前节点值的节点。节点的右子树只包含大于当前节点值的节点。左右子树也必须是二叉搜索树。 二叉树搜索树性质 从上面的二叉搜索树定义中可以了…...

基于开源云原生数据仓库 ByConity 体验多种数据分析场景
基于开源云原生数据仓库 ByConity 体验多种数据分析场景 业务背景什么是 ByConity上手实测环境要求测试操作远程登录 ECS 服务器windows10 自带连接工具 执行查询 ByConity 相对于 ELT 能力的优化提升并行度任务级重试并行写入简化数据链路 业务背景 大家都知道,在…...

RabbitMQ 消息确认机制
RabbitMQ 消息确认机制 本文总结了RabbitMQ消息发送过程中的一些代码片段,详细分析了回调函数和发布确认机制的实现,以提高消息传递的可靠性。 返回回调机制的代码分析 主要用途 这个代码主要用于设置RabbitMQ消息发送过程中的回调函数,即…...

Node.js:开发和生产之间的区别
Node.js 中的开发和生产没有区别,即,你无需应用任何特定设置即可使 Node.js 在生产配置中工作。但是,npm 注册表中的一些库会识别使用 NODE_ENV 变量并将其默认为 development 设置。始终在设置了 NODE_ENVproduction 的情况下运行 Node.js。…...

【QT】背景,安装和介绍
TOC 目录 背景 GUI技术 QT的安装 使用流程 QT程序介绍 main.cpp编辑 Wiget.h Widget.cpp form file .pro文件 临时文件 C作为一门比较古老的语言,在人们的认知里始终是以底层,复杂和高性能著称,所以在很多高性能需求的场景之下…...

从0到1搭建webpack
好,上一篇文章我们说了一下在react中怎么弄这个webpack,那么现在在说一下不用react我们又该怎么配置,这些呢也都是我自己通弄过看视频自己总结的,拿来给大家分享一下。 前期准备条件 1、nvm(可以快速切换node版本&am…...

针对解决conda环境BUG的个人笔记
1-conda学习&安装 安装视频: 零基础教程:基于Anaconda和PyCharm配置Pytorch环境_哔哩哔哩_bilibili 安装过程: MX250笔记本安装Pytorch、CUDA和cuDNN-CSDN博客 Win10MX250CUDA10.1cuDNNPytorch1.4安装测试全过程(吐血)_nvidia geforc…...
读《Effective Java》笔记 - 条目13
条目13:谨慎重写clone方法 浅拷贝和深拷贝 浅拷贝(Shallow Copy) 浅拷贝 只复制对象本身,而不复制对象引用的成员。 对于引用类型的字段,浅拷贝会将原对象的引用复制到新对象中,而不会创建新对象实例。因…...
SQL 之连接查询
SQL 连接查询:深入理解 JOIN 操作 在数据库管理中,连接查询(JOIN)是一种基本而强大的操作,它允许我们从两个或多个表中检索数据。SQL 中的 JOIN 操作使得数据整合变得简单,这对于数据分析和报告至关重要。…...

vscode切换anaconda虚拟环境解释器不成功
问题: 切换解释器之后运行代码还是使用的原来的解释器 可以看到,我已经切换了“nlp”解释器,我的nltk包只在“nlp”环境下安装了,但是运行代码依然是"torch"解释器,所以找不到“nltk”包。 在网上找了各种…...

一个实用的 Maven localRepository 工具
目录 1 现状2 当前解决3 更好的解决3.1 下载 Maven localRepository 工具包3.2 上传本地 localRepository 包3.3 清理 localRepository 中指定后缀的文件 1 现状 在使用 Maven 时,我们可能会经常与本地仓库和私服仓库打交道。 例如对于本地仓库,因为某…...

目标检测,图像分割,超分辨率重建
目标检测和图像分割 目标检测和图像分割是计算机视觉中的两个不同任务,它们的输出形式也有所不同。下面我将分别介绍这两个任务的输出。图像分割又可以分为:语义分割、实例分割、全景分割。 语义分割(Semantic Segmentation)&…...

微信小程序 城市点击后跳转 并首页显示被点击城市
在微信小程序中,渲染出城市列表后,如何点击城市,就跳转回到首页,并在首页显示所点击的城市呢? 目录 一、定义点击城市的事件 二、首页的处理 首页:点击成都市会跳转到城市列表 城市列表:点击…...
Linux - nfs服务器
五、nfs服务器 1、基础 NFS服务器可以让PC将网络中的NFS服务器共享的目录挂载到本地端的文件系统中,而在本地端的系统 中看来,那个远程主机的目录就好像是自己的一个磁盘分区一样。 由于NFS支持的功能比较多,而不同的功能都会使用不同的程…...
uniapp图片上传预览uni.chooseImage、uni.previewImage
文章目录 1.上传图片2.预览图片 1.上传图片 uni.chooseImage(OBJECT) 从本地相册选择图片或使用相机拍照。 App端如需要更丰富的相机拍照API(如直接调用前置摄像头),参考plus.camera 微信小程序从基础库 2.21.0 开始, wx.choos…...
C++ 字符串中数字识别
【问题描述】 输入一个字符串,含有数字和非数字字符,如“sumabc234;while(abc700)tab{ass346;bssabc267;}”,将其中连续的数字作为一个整数,依次存放到一个数组nums中。例如,234放在nums[0],700放在nums[1…...
学术中常见理论归纳总结-不定期更新
1.信息传播类 1.1 扩散创新理论 创新扩散理论是传播效果研究的经典理论之一,是由美国学者埃弗雷特罗杰斯(E.M.Rogers)于20世纪60年代提出的一个关于通过媒介劝服人们接受新观念、新事物、新产品的理论,侧重大众传播对社会和文化的影响。 1927-1941年进行的“艾奥瓦杂交玉…...

ModelSim怎么修改字体及大小
点击TOOLS 选择PERFERENCES选择下一级菜单的TEXTFONT/CHOOSE/选择字体和大小最后不要忘记点apply再退出...

图片预处理技术介绍4——降噪
图片预处理 大家好,我是阿赵。 这一篇将两种基础的降噪算法。 之前介绍过均值模糊和高斯模糊。如果从降噪的角度来说,模糊算法也算是降噪的一类,所以之前介绍的两种模糊可以称呼为均值降噪和高斯降噪。不过模糊算法对原来的图像特征的…...

Scrapy管道设置和数据保存
1.1 介绍部分: 文字提到常用的Web框架有Django和Flask,接下来将学习一个全球范围内流行的爬虫框架Scrapy。 1.2 内容部分: Scrapy的概念、作用和工作流程 Scrapy的入门使用 Scrapy构造并发送请求 Scrapy模拟登陆 Scrapy管道的使用 Scrapy中…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...

CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...

ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...

在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...

回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...

密码学基础——SM4算法
博客主页:christine-rr-CSDN博客 专栏主页:密码学 📌 【今日更新】📌 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 编辑…...