【大模型微调】一些观点的总结和记录
-
垂直领域大部分不用保持通用能力的,没必要跟淘宝客服聊天气预报,但是主要还是领导让你保持
-
微调方法没有大变数了,只能在数据上下功夫,我能想到的只有提高微调数据质量。
-
sft微调的越多,遗忘的越多. 不过对于小任务,rank比较低(例如8,16)的任务,影响还是有有限的。一般很少掉点明显。
-
sft能够改变回复风格。原来的风格是列表回复,如果sft数据集很短,则sft后的数据集也会很短,理论上二者的风格应该一致才行
-
在LLM时代,需要牢记 数据质量 > 数量 这个真理,如:[Less is More! 上交清源 && 里海 | 利用200条数据微调模型,怒超MiniGPT-4!],超大规模的SFT数据会让下游任务LLM减弱或者失去ICL、CoT等能力
-
全流程的LLM训练包括:预训练、监督微调、奖励模型、强化学习,多数情况下监督微调即可满足自身需求。
-
对于垂类模型,更应该关注PT的过程,而不是采集千万百万的SFT数据做训练,一般建议是 大规模预训练+小规模监督微调=超强的LLM模型
-
指令微调阶段不能够进行过多轮次训练:
相关文章:
【大模型微调】一些观点的总结和记录
垂直领域大部分不用保持通用能力的,没必要跟淘宝客服聊天气预报,但是主要还是领导让你保持 微调方法没有大变数了,只能在数据上下功夫,我能想到的只有提高微调数据质量。 sft微调的越多,遗忘的越多. 不过对于小任务,rank比较低(例如8,16)的任务,影响还是有有限的。一…...
Vue 3 Hooks 教程
Vue 3 Hooks 教程 1. 什么是 Hooks? 在 Vue 3 中,Hooks 是一种组织和复用组件逻辑的强大方式。它们允许您将组件的状态逻辑提取到可重用的函数中,从而简化代码并提高代码的可维护性。 2. 基本 Hooks 介绍 2.1 ref 和 reactive 这两个函数…...
pandas数据处理及其数据可视化的全流程
Pandas数据处理及其可视化的全流程是一个复杂且多步骤的过程,涉及数据的导入、清洗、转换、分析、可视化等多个环节。以下是一个详细的指南,涵盖了从数据准备到最终的可视化展示的全过程。请注意,这个指南将超过4000字,因此请耐心…...
docker 在ubuntu系统安装,以及常用命令,配置阿里云镜像仓库,搭建本地仓库等
1.docker安装 1.1 先检查ubuntu系统有没有安装过docker 使用 docker -v 命令 如果有请先卸载旧版本,如果没有直接安装命令如下: 1.1.0 首先,确保你的系统包是最新的: 如果是root 权限下面命令的sudo可以去掉 sudo apt-get upda…...
torch.maximum函数介绍
torch.maximum 函数介绍 定义:torch.maximum(input, other) 返回两个张量的逐元素最大值。 输入参数: input: 张量,表示第一个输入。other: 张量或标量,表示第二个输入。若为张量,其形状需要能与 input 广播。输出&a…...
Java面试之多线程并发篇(9)
前言 本来想着给自己放松一下,刷刷博客,突然被几道面试题难倒!引用类型有哪些?有什么区别?说说你对JMM内存模型的理解?为什么需要JMM?多线程有什么用?似乎有点模糊了,那…...
Java全栈:超市购物系统实现
项目介绍 本文将介绍如何使用Java全栈技术开发一个简单的超市购物系统。该系统包含以下主要功能: 商品管理用户管理购物车订单处理库存管理技术栈 后端 Spring Boot 2.7.0Spring SecurityMyBatis PlusMySQL 8.0Redis前端 Vue.js 3Element PlusAxiosVuex系统架构 整体架构 …...
1.1 数据结构的基本概念
1.1.1 基本概念和术语 一、数据、数据对象、数据元素和数据项的概念和关系 数据:是客观事物的符号表示,是所有能输入到计算机中并被计算机程序处理的符号的总称。 数据是计算机程序加工的原料。 数据对象:是具有相同性质的数据元素的集合&…...
深度学习:GPT-2的MindSpore实践
GPT-2简介 GPT-2是一个由OpenAI于2019年提出的自回归语言模型。与GPT-1相比,仍基于Transformer Decoder架构,但是做出了一定改进。 模型规格上: GPT-1有117M参数,为下游微调任务提供预训练模型。 GPT-2显著增加了模型规模&…...
【Oracle11g SQL详解】ORDER BY 子句的排序规则与应用
ORDER BY 子句的排序规则与应用 在 Oracle 11g 中,ORDER BY 子句用于对查询结果进行排序。通过使用 ORDER BY,可以使返回的数据按照指定的列或表达式以升序或降序排列,便于数据的分析和呈现。本文将详细讲解 ORDER BY 子句的规则及其常见应用…...
YOLO系列论文综述(从YOLOv1到YOLOv11)【第15篇(完结):讨论和未来展望】
总结 0 前言1 YOLO与人工通用智能(AGI)2 YOLO作为“能够行动的神经网络”3 具身人工智能(EAI)4 边缘设备上的YOLO5 评估统计指标的挑战6 YOLO与环境影响 YOLO系列博文: 【第1篇:概述物体检测算法发展史、YO…...
Java设计模式 —— 【创建型模式】原型模式(浅拷贝、深拷贝)详解
文章目录 前言原型模式一、浅拷贝1、案例2、引用数据类型 二、深拷贝1、重写clone()方法2、序列化 总结 前言 先看一下传统的对象克隆方式: 原型类: public class Student {private String name;public Student(String name) {this.name name;}publi…...
SciAssess——评估大语言模型在科学文献处理中关于模型的记忆、理解和分析能力的基准
概述 大规模语言模型(如 Llama、Gemini 和 GPT-4)的最新进展因其卓越的自然语言理解和生成能力而备受关注。对这些模型进行评估对于确定其局限性和潜力以及促进进一步的技术进步非常重要。为此,人们提出了一些特定的基准来评估大规模语言模型…...
SQLModel与FastAPI结合:构建用户增删改查接口
SQLModel简介 SQLModel是一个现代化的Python库,旨在简化与数据库的交互。它结合了Pydantic和SQLAlchemy的优势,使得定义数据模型、进行数据验证和与数据库交互变得更加直观和高效。SQLModel由FastAPI的创始人Sebastin Ramrez开发,专为与FastA…...
【RISC-V CPU debug 专栏 2.3 -- Run Control】
文章目录 Run ControlHart 运行控制状态位状态信号操作流程时间与实现注意事项Run Control 在 RISC-V 调试架构中,运行控制模块通过管理多个状态位来对硬件线程(harts)的执行进行调节和控制。这些状态位帮助调试器请求暂停或恢复 harts,并在 hart 复位时进行控制。以下是运…...
探索 IntelliJ IDEA 中 Spring Boot 运行配置
前言 IntelliJ IDEA 作为一款功能强大的集成开发环境(IDE),为 Spring Boot 应用提供了丰富的运行配置选项,定义了如何在 IntelliJ IDEA 中运行 Spring Boot 应用程序,当从主类文件运行应用程序时,IDE 将创建…...
三除数枚举
给你一个整数 n 。如果 n 恰好有三个正除数 ,返回 true ;否则,返回 false 。 如果存在整数 k ,满足 n k * m ,那么整数 m 就是 n 的一个 除数 。 输入:n 4 输出:true 解释:4 有三…...
【051】基于51单片机温度计【Proteus仿真+Keil程序+报告+原理图】
☆、设计硬件组成:51单片机最小系统DS18B20温度传感器LCD1602液晶显示按键设置蜂鸣器LED灯。 1、本设计采用STC89C51/52、AT89C51/52、AT89S51/52作为主控芯片; 2、采用DS18B20温度传感器测量温度,并且通过LCD1602实时显示温度;…...
[Java]微服务之服务保护
雪崩问题 微服务调用链路中的某个服务故障,引起整个链路中的所有微服务都不可用,这就是雪崩 雪崩问题产生的原因是什么? 微服务相互调用,服务提供者出现故障或阻塞。服务调用者没有做好异常处理,导致自身故障。调用链中的所有服…...
自动驾驶目标检测融合全貌
1、early fusion 早期融合,特点用到几何空间转换3d到2d或者2d到3d的转换,用像素找点云或者用点云找像素。 2、deep fusion 深度融合,也是特征级别融合,也叫多模态融合,如bevfusion范式 3、late fusion 晚融合&#x…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
