【大模型微调】一些观点的总结和记录
-
垂直领域大部分不用保持通用能力的,没必要跟淘宝客服聊天气预报,但是主要还是领导让你保持
-
微调方法没有大变数了,只能在数据上下功夫,我能想到的只有提高微调数据质量。
-
sft微调的越多,遗忘的越多. 不过对于小任务,rank比较低(例如8,16)的任务,影响还是有有限的。一般很少掉点明显。
-
sft能够改变回复风格。原来的风格是列表回复,如果sft数据集很短,则sft后的数据集也会很短,理论上二者的风格应该一致才行
-
在LLM时代,需要牢记 数据质量 > 数量 这个真理,如:[Less is More! 上交清源 && 里海 | 利用200条数据微调模型,怒超MiniGPT-4!],超大规模的SFT数据会让下游任务LLM减弱或者失去ICL、CoT等能力
-
全流程的LLM训练包括:预训练、监督微调、奖励模型、强化学习,多数情况下监督微调即可满足自身需求。
-
对于垂类模型,更应该关注PT的过程,而不是采集千万百万的SFT数据做训练,一般建议是 大规模预训练+小规模监督微调=超强的LLM模型
-
指令微调阶段不能够进行过多轮次训练:
相关文章:
【大模型微调】一些观点的总结和记录
垂直领域大部分不用保持通用能力的,没必要跟淘宝客服聊天气预报,但是主要还是领导让你保持 微调方法没有大变数了,只能在数据上下功夫,我能想到的只有提高微调数据质量。 sft微调的越多,遗忘的越多. 不过对于小任务,rank比较低(例如8,16)的任务,影响还是有有限的。一…...
Vue 3 Hooks 教程
Vue 3 Hooks 教程 1. 什么是 Hooks? 在 Vue 3 中,Hooks 是一种组织和复用组件逻辑的强大方式。它们允许您将组件的状态逻辑提取到可重用的函数中,从而简化代码并提高代码的可维护性。 2. 基本 Hooks 介绍 2.1 ref 和 reactive 这两个函数…...
pandas数据处理及其数据可视化的全流程
Pandas数据处理及其可视化的全流程是一个复杂且多步骤的过程,涉及数据的导入、清洗、转换、分析、可视化等多个环节。以下是一个详细的指南,涵盖了从数据准备到最终的可视化展示的全过程。请注意,这个指南将超过4000字,因此请耐心…...
docker 在ubuntu系统安装,以及常用命令,配置阿里云镜像仓库,搭建本地仓库等
1.docker安装 1.1 先检查ubuntu系统有没有安装过docker 使用 docker -v 命令 如果有请先卸载旧版本,如果没有直接安装命令如下: 1.1.0 首先,确保你的系统包是最新的: 如果是root 权限下面命令的sudo可以去掉 sudo apt-get upda…...
torch.maximum函数介绍
torch.maximum 函数介绍 定义:torch.maximum(input, other) 返回两个张量的逐元素最大值。 输入参数: input: 张量,表示第一个输入。other: 张量或标量,表示第二个输入。若为张量,其形状需要能与 input 广播。输出&a…...
Java面试之多线程并发篇(9)
前言 本来想着给自己放松一下,刷刷博客,突然被几道面试题难倒!引用类型有哪些?有什么区别?说说你对JMM内存模型的理解?为什么需要JMM?多线程有什么用?似乎有点模糊了,那…...
Java全栈:超市购物系统实现
项目介绍 本文将介绍如何使用Java全栈技术开发一个简单的超市购物系统。该系统包含以下主要功能: 商品管理用户管理购物车订单处理库存管理技术栈 后端 Spring Boot 2.7.0Spring SecurityMyBatis PlusMySQL 8.0Redis前端 Vue.js 3Element PlusAxiosVuex系统架构 整体架构 …...
1.1 数据结构的基本概念
1.1.1 基本概念和术语 一、数据、数据对象、数据元素和数据项的概念和关系 数据:是客观事物的符号表示,是所有能输入到计算机中并被计算机程序处理的符号的总称。 数据是计算机程序加工的原料。 数据对象:是具有相同性质的数据元素的集合&…...
深度学习:GPT-2的MindSpore实践
GPT-2简介 GPT-2是一个由OpenAI于2019年提出的自回归语言模型。与GPT-1相比,仍基于Transformer Decoder架构,但是做出了一定改进。 模型规格上: GPT-1有117M参数,为下游微调任务提供预训练模型。 GPT-2显著增加了模型规模&…...
【Oracle11g SQL详解】ORDER BY 子句的排序规则与应用
ORDER BY 子句的排序规则与应用 在 Oracle 11g 中,ORDER BY 子句用于对查询结果进行排序。通过使用 ORDER BY,可以使返回的数据按照指定的列或表达式以升序或降序排列,便于数据的分析和呈现。本文将详细讲解 ORDER BY 子句的规则及其常见应用…...
YOLO系列论文综述(从YOLOv1到YOLOv11)【第15篇(完结):讨论和未来展望】
总结 0 前言1 YOLO与人工通用智能(AGI)2 YOLO作为“能够行动的神经网络”3 具身人工智能(EAI)4 边缘设备上的YOLO5 评估统计指标的挑战6 YOLO与环境影响 YOLO系列博文: 【第1篇:概述物体检测算法发展史、YO…...
Java设计模式 —— 【创建型模式】原型模式(浅拷贝、深拷贝)详解
文章目录 前言原型模式一、浅拷贝1、案例2、引用数据类型 二、深拷贝1、重写clone()方法2、序列化 总结 前言 先看一下传统的对象克隆方式: 原型类: public class Student {private String name;public Student(String name) {this.name name;}publi…...
SciAssess——评估大语言模型在科学文献处理中关于模型的记忆、理解和分析能力的基准
概述 大规模语言模型(如 Llama、Gemini 和 GPT-4)的最新进展因其卓越的自然语言理解和生成能力而备受关注。对这些模型进行评估对于确定其局限性和潜力以及促进进一步的技术进步非常重要。为此,人们提出了一些特定的基准来评估大规模语言模型…...
SQLModel与FastAPI结合:构建用户增删改查接口
SQLModel简介 SQLModel是一个现代化的Python库,旨在简化与数据库的交互。它结合了Pydantic和SQLAlchemy的优势,使得定义数据模型、进行数据验证和与数据库交互变得更加直观和高效。SQLModel由FastAPI的创始人Sebastin Ramrez开发,专为与FastA…...
【RISC-V CPU debug 专栏 2.3 -- Run Control】
文章目录 Run ControlHart 运行控制状态位状态信号操作流程时间与实现注意事项Run Control 在 RISC-V 调试架构中,运行控制模块通过管理多个状态位来对硬件线程(harts)的执行进行调节和控制。这些状态位帮助调试器请求暂停或恢复 harts,并在 hart 复位时进行控制。以下是运…...
探索 IntelliJ IDEA 中 Spring Boot 运行配置
前言 IntelliJ IDEA 作为一款功能强大的集成开发环境(IDE),为 Spring Boot 应用提供了丰富的运行配置选项,定义了如何在 IntelliJ IDEA 中运行 Spring Boot 应用程序,当从主类文件运行应用程序时,IDE 将创建…...
三除数枚举
给你一个整数 n 。如果 n 恰好有三个正除数 ,返回 true ;否则,返回 false 。 如果存在整数 k ,满足 n k * m ,那么整数 m 就是 n 的一个 除数 。 输入:n 4 输出:true 解释:4 有三…...
【051】基于51单片机温度计【Proteus仿真+Keil程序+报告+原理图】
☆、设计硬件组成:51单片机最小系统DS18B20温度传感器LCD1602液晶显示按键设置蜂鸣器LED灯。 1、本设计采用STC89C51/52、AT89C51/52、AT89S51/52作为主控芯片; 2、采用DS18B20温度传感器测量温度,并且通过LCD1602实时显示温度;…...
[Java]微服务之服务保护
雪崩问题 微服务调用链路中的某个服务故障,引起整个链路中的所有微服务都不可用,这就是雪崩 雪崩问题产生的原因是什么? 微服务相互调用,服务提供者出现故障或阻塞。服务调用者没有做好异常处理,导致自身故障。调用链中的所有服…...
自动驾驶目标检测融合全貌
1、early fusion 早期融合,特点用到几何空间转换3d到2d或者2d到3d的转换,用像素找点云或者用点云找像素。 2、deep fusion 深度融合,也是特征级别融合,也叫多模态融合,如bevfusion范式 3、late fusion 晚融合&#x…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...
