CLIP-MMA: Multi-Modal Adapter for Vision-Language Models
当前的问题
CLIP-Adapter仅单独调整图像和文本嵌入,忽略了不同模态之间的交互作用。此外,适应性参数容易过拟合训练数据,导致新任务泛化能力的损失。
动机
图1所示。多模态适配器说明。
通过一种基于注意力的 Adapter ,作者称之为多模态 Adapter (图1),通过整合它们的信息,共同调整文本和图像特征,导致更全面的适配。此外,适配是针对特定任务的,有效地利用每个任务的视觉和文本信息。这使得模型能够更有效地避免在训练任务上过拟合,从而在未见过的任务上获得更好的泛化能力。
方法
多模态 Adapter 包括三个不同的部分:一个嵌入降采样器、一个 Mask 多头注意力网络以及两个带有非线性激活函数的线性层。
维度下采样
在 Adapter 中使用了多头注意力层来聚合多模态信息。然而,多头注意力层可能会给网络引入参数昂贵的操作,尤其是当嵌入维度较大时,例如,原始CLIP的嵌入维度 ( C Emb ) = 512 (\text{C}_{\text{Emb}})=512 (CEmb)=512。为了降低可训练参数的数量,作者在注意力层之前在CLIP嵌入上引入了一个维度下采样器。下采样器由一个线性层 D ( ⋅ ) D(\cdot) D(⋅)组成,该层降低嵌入维度。最后,多头注意力层的输入通过 D ( ⋅ ) D(\cdot) D(⋅)传递,其中 W D ∈ R C Emb × C Emb / 4 W_D\in \mathbb{R}^{\text{C}_{\text{Emb}}\times \text{C}_{\text{Emb}}/4} WD∈RCEmb×CEmb/4 。
每个图像样本创建多头注意 ( MHA ( ⋅ ) ) (\text{MHA}(\cdot)) (MHA(⋅))输入。提示符 Emb text \text{Emb}_{\text{text}} Embtext的文本嵌入和视觉输入 Emb image \text{Emb}_{\text{image}} Embimage的图像嵌入被连接成一个序列:
其中 Input MHA ∈ R ( N c l a s s e s + 1 ) × N B a t c h × E N \text{Input}_{\text{MHA}}\in \mathbb{R}^{(N^{classes}+1)\times N^{Batch}\times E_N} InputMHA∈R(Nclasses+1)×NBatch×EN。其中, N c l a s s e s + 1 N^{classes}+1 Nclasses+1表示类(文本嵌入)和一个图像嵌入的数量之和(图2), E N E_N EN表示嵌入的维数。
图2所示。 Input MHA \text{Input}_{\text{MHA}} InputMHA的插图。文本表示与视觉表示串联成一个序列,通过掩模多头注意网络传递。
Mask 多头注意力
在维度下采样后,通过多头注意力层聚合潜在表示。为了区分多头注意力层的文本和图像输入,使用注意力 Mask 来调整每个模态内的信息交互。**使用“0”表示正向交互,“-∞”表示负向交互。**因此,**每个文本嵌入仅由相应的图像信息调整,而部分忽略其他文本嵌入中的信息。图像嵌入也是如此。**给定 P P P个 Prompt 和 I I I个图像, T = P + I T=P+I T=P+I总元素数。
、
me:图示如下
其中, i i i表示行(取值范围为 0 ∼ T − 1 0\sim T-1 0∼T−1), j j j表示列(取值范围为 0 ∼ T − 1 0\sim T-1 0∼T−1)。
掩码计算完成后,通过求和运算将掩码应用到多头注意力网络中:
多模态 Adapter
随后,MHA的输出经过两个线性上采样层 U 1 ( ⋅ ) , U 2 ( ⋅ ) U_1(\cdot),U_2(\cdot) U1(⋅),U2(⋅),其间使用GELU,其中 W U 1 ∈ R C Emb / 4 × C Emb / 16 , W U 2 ∈ R C Emb / 16 × C Emb W_{U1}\in \mathbb{R}^{\text{C}_{\text{Emb}/4}\times \text{C}_{\text{Emb}}/16},W_{U2}\in \mathbb{R}^{\text{C}_{\text{Emb}}/16 \times \text{C}_{\text{Emb}}} WU1∈RCEmb/4×CEmb/16,WU2∈RCEmb/16×CEmb
总之,我们完成了多模态适配器
实验结果
参考资料
论文下载(arxiv,3 Sep 2024)
https://www.arxiv.org/abs/2409.02958
代码地址
https://github.com/dqmis/clip-mma
参考文章
https://mp.weixin.qq.com/s/VP4R9-ZYSohwxdY9W3xJQg
相关文章:

CLIP-MMA: Multi-Modal Adapter for Vision-Language Models
当前的问题 CLIP-Adapter仅单独调整图像和文本嵌入,忽略了不同模态之间的交互作用。此外,适应性参数容易过拟合训练数据,导致新任务泛化能力的损失。 动机 图1所示。多模态适配器说明。 通过一种基于注意力的 Adapter ,作者称之…...
三维扫描仪-3d扫描建模设备自动检测尺寸
在现代工业制造领域,三维扫描仪已成为实现高精度尺寸检测的关键设备。CASAIM自动化智能检测系统以其自动化三维立体扫描技术,为产品尺寸的自动检测提供了高效、可靠的解决方案。 CASAIM自动化智能检测系统通过非接触式测量方式,通过激光扫描…...
vue3+ant design vue实现日期选择器默认显示当前年,并限制用户只能选择当前年及之前~
1、思路:之前想拿当前年直接做赋值操作,实际上是行不通的,因为组件本身有数据格式限制,会出现报错,然后索性直接获取当前日期(YYYY-MM-DD)赋值给日期组件,这样不管你用的是年&#x…...

【electron-vite】搭建electron+vue3框架基础
一、拉取项目 electron-vite 中文文档地址: https://cn-evite.netlify.app/guide/ 官网网址:https://evite.netlify.app/ 版本 vue版本:vue3 构建工具:vite 框架类型:Electron JS语法:TypeScript &…...

05《存储器层次结构与接口》计算机组成与体系结构 系列课
目录 存储器层次结构概述 层次结构的定义 存储器的排名 存储器接口 处理器与存储器的速度匹配 存储器接口的定义 存储器访问命中率 两种接口 第1种方式:并行 命中率的计算 存储器访问时间 第2种方式:逐级 结语 大家好,欢迎回来。…...
elasticsearch报错fully-formed single-node cluster with cluster UUID
1.问题描述 k8s集群内部署的es中间件起不来,查看日志发现如下警告,节点发现功能开启,但是目前我是单节点服务,所以尝试编辑sts将节点发现功能去掉或者在部署时将你的sts的yaml文件和chart文件修改重新部署以去掉该功能 {"t…...

Milvus×Florence:一文读懂如何构建多任务视觉模型
近两年来多任务学习(Multi-task learning)正取代传统的单任务学习(single-task learning),逐渐成为人工智能领域的主流研究方向。其原因在于,多任务学习可以让我们以最少的人力投入,获得尽可能多…...
DAPP
02-DAPP 1 啥是 DApp? DApp,部署在链上的去中心化的应用。 DApp 是开放源代码,能运行在分布式网络上,通过网络中不同对等节点相互通信进行去中心化操作的应用。 DAPP 开放源代码,才能获得人的信任。如比特币ÿ…...
生产环境中,nginx 最多可以代理多少台服务器,这个应该考虑哪些参数 ?怎么计算呢
生产环境中,nginx 最多可以代理多少台服务器,这个应该考虑哪些参数 ?怎么计算呢 关键参数计算方法评估步骤总结 在生产环境中,Nginx最多可以代理的服务器数量并没有一个固定的限制,它取决于多个因素,包括Ng…...

【深度学习|目标跟踪】StrongSORT 详解(以及StrongSORT++)
StrongSort详解 1、论文及源码2、DeepSORT回顾3、StrongSORT的EMA4、StrongSORT的NSA Kalman5、StrongSORT的MC6、StrongSORT的BOT特征提取器7、StrongSORT的AFLink8、StrongSORT的GSI模块 1、论文及源码 论文地址:https://arxiv.org/pdf/2202.13514 源码地址&#…...

23种设计模式-原型(Prototype)设计模式
文章目录 一.什么是原型设计模式?二.原型模式的特点三.原型模式的结构四.原型模式的优缺点五.原型模式的 C 实现六.原型模式的 Java 实现七. 代码解析八.总结 类图: 原型设计模式类图 一.什么是原型设计模式? 原型模式(Prototype…...
Qt—QLineEdit 使用总结
文章参考:Qt—QLineEdit 使用总结 一、简述 QLineEdit是一个单行文本编辑控件。 使用者可以通过很多函数,输入和编辑单行文本,比如撤销、恢复、剪切、粘贴以及拖放等。 通过改变 QLineEdit 的 echoMode() ,可以设置其属性,比如以密码的形式输入。 文本的长度可以由 m…...

go-zero使用自定义模板实现统一格式的 body 响应
前提 go环境的配置、goctl的安装、go-zero的基本使用默认都会 需求 go-zero框架中,默认使用goctl命令生成的代码并没有统一响应格式,现在使用自定义模板实现统一响应格式: {"code": 0,"msg": "OK","d…...
BUGKU printf
整体思路 实现循环-->获取libc版本和system函数地址->将strcpy的got表项修改为system并获得shell 第一步:实现循环 从汇编语句可以看出,在每次循环结束时若0x201700处的值是否大于1则会继续循环。 encode1会将编码后的结果保存至0x2015c0处&am…...

深度学习:梯度下降法
损失函数 L:衡量单一训练样例的效果。 成本函数 J:用于衡量 w 和 b 的效果。 如何使用梯度下降法来训练或学习训练集上的参数w和b ? 成本函数J是参数w和b的函数,它被定义为平均值; 损失函数L可以衡量你的算法效果&a…...

`console.log`调试完全指南
大家好,这里是 Geek技术前线。 今天我们来探讨 Console.log() 的一些优点。并分析一些基本概念和实践,这些可以让我们的调试工作变得更加高效。 理解前端 log 与后端 log 的区别 前端 log 与后端 log 有着显著的不同,理解这一点至关重要。…...

ROS VSCode调试方法
VSCode 调试 Ros文档 1.编译参数设置 cd catkin_ws catkin_make -DCMAKE_BUILD_TYPEDebug2.vscode 调试插件安装 可在扩展中安装(Ctrl Shift X): 1.ROS 2.C/C 3.C Intelliense 4.Msg Language Support 5.Txt Syntax 3.导入已有或者新建ROS工作空间 3.1 导入工作…...

16 —— Webpack多页面打包
需求:把 黑马头条登陆页面-内容页面 一起引入打包使用 步骤: 准备源码(html、css、js)放入相应位置,并改用模块化语法导出 原始content.html代码 <!DOCTYPE html> <html lang"en"><head&…...

微服务即时通讯系统的实现(服务端)----(3)
目录 1. 消息存储子服务的实现1.1 功能设计1.2 模块划分1.3 模块功能示意图1.4 数据管理1.4.1 数据库消息管理1.4.2 ES文本消息管理 1.5 接口的实现1.5.1 消息存储子服务所用到的protobuf接口实现1.5.2 最近N条消息获取接口实现1.5.3 指定时间段消息搜索接口实现1.5.4 关键字消…...
.net6.0 mvc 传递 model 实体参数(无法对 null 引用执行运行时绑定)
说一下情况: 代码没问题,能成功从数据库里查到数据,能将数据丢给ViewBag.XXXX, 在View页面也能获取到 ViewBag.XXXX的值,但是发布到线上后报这个错: Microsoft.CSharp.RuntimeBinder.RuntimeBinderException: 无法对 …...

stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具
第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...

OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
全面解析数据库:从基础概念到前沿应用
在数字化时代,数据已成为企业和社会发展的核心资产,而数据库作为存储、管理和处理数据的关键工具,在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理,到社交网络的用户数据存储,再到金融行业的交易记录处理&a…...