当前位置: 首页 > news >正文

Leetcode - 周赛425

目录

一,3364. 最小正和子数组

二, 3365. 重排子字符串以形成目标字符串

三,3366. 最小数组和

四,3367. 移除边之后的权重最大和


一,3364. 最小正和子数组

本题可以直接暴力枚举,代码如下:

class Solution {public int minimumSumSubarray(List<Integer> nums, int l, int r) {int n = nums.size();int ans = Integer.MAX_VALUE;for(int k=l; k<=r; k++){int s = 0;for(int i=0, j=0; j<n; j++){s += nums.get(j);if(j-i+1 > k){s -= nums.get(i);i++;}if(j-i+1 == k && s > 0) ans = Math.min(ans, s);}}return ans==Integer.MAX_VALUE ? -1 : ans;}
}

如果它的数据范围更大一点,上述做法会超时,所以这里再介绍一个O(n*logn)的做法:

  • 这题求子数组和的最小正值,子数组和可以直接使用前缀和来求
  • 题目要求子数组的长度在 [L,R] 之间,可以枚举左端点 / 右端点,这里选择枚举右端点下标 i,再根据上述条件直接推出左端点的下标 j 的范围 [i-R,i-L]
  • 假设前缀和数组为 s,此时 si 是固定的,要使得 si - sj 的值更大,sj 必须是小于 si 的最大值(题目要求为正数),求 sj < si 的最大值且 j 属于 [i-R,i-L],这可以使用有序集合+二分来做

代码如下:

class Solution {public int minimumSumSubarray(List<Integer> nums, int l, int r) {int n = nums.size();int ans = Integer.MAX_VALUE;int[] pre = new int[n+1];for(int i=0; i<n; i++){pre[i+1] = pre[i] + nums.get(i);}//枚举右端点:[i-r, i-l] ~ i//s[i-r, i-l] < si, 二分枚举最接近si的值 TreeMap<Integer, Integer> map = new TreeMap<>();for(int i=l, j=0; i<=n; i++){map.merge(pre[i-l], 1, Integer::sum);// 错误写法:// 当l==r时,会出错(没有计算当前子数组的大小)// if(i-r > 0){//     map.merge(pre[i-r], -1, Integer::sum);//     if(map.get(pre[i-r])==0) map.remove(pre[i-r]);// } Integer res = map.lowerKey(pre[i]);if(res != null)ans = Math.min(ans, pre[i]-res);if(i-r >= 0){map.merge(pre[i-r], -1, Integer::sum);if(map.get(pre[i-r])==0) map.remove(pre[i-r]);} }return ans == Integer.MAX_VALUE ? -1 : ans;}
}

二, 3365. 重排子字符串以形成目标字符串

本题直接暴力哈希,使用哈希表统计字符串 s 中分割成 k 个等长的子字符串,再看 t 中分割出的 k 个等长子字符串是否与字符串 s 完全相同。

代码如下:

class Solution {public boolean isPossibleToRearrange(String s, String t, int k) {Map<String, Integer> map = new HashMap<>();int n = s.length();for(int i=n/k; i<=n; i+=n/k){map.merge(s.substring(i-n/k, i), 1, Integer::sum);}for(int i=n/k; i<=n; i+=n/k){String x = t.substring(i-n/k, i);map.merge(x, -1, Integer::sum);if(map.get(x) == 0) map.remove(x);if(map.getOrDefault(x, 0) < 0) return false; }return map.size() == 0;}
}

三,3366. 最小数组和

本题数据范围较小,直接使用dp暴力求解,先找与原问题相同的子问题,从前往后遍历,对于第 i 个数来说:

  • 不执行任何操作,剩下变成求 [i+1,n] 这些数进行 x 次操作1,y 次操作2后的最小元素和
  • 执行操作1,剩下变成求 [i+1,n] 这些数进行 x-1 次操作1,y 次操作2后的最小元素和
  • 执行操作2,剩下变成求 [i+1,n] 这些数进行 x 次操作1,y-1 次操作2后的最小元素和
  • 执行操作1和操作2,剩下变成求 [i+1,n] 这些数进行 x-1 次操作1,y-1 次操作2后的最小元素和

定义 dfs(i,x,y):对 [i,n] 进行 x 次操作1,y 次操作2后的最小元素和,对于 nums[i] 进行分类讨论:

  • 不执行任何操作,剩下变成求 [i+1,n] 这些数进行 x 次操作1,y次操作2后的最小元素和,即dfs(i+1,x,y) + nums[i]
  • 执行操作1,剩下变成求 [i+1,n] 这些数进行 x-1 次操作1,y次操作2后的最小元素和,即dfs(i+1,x-1,y) + (nums[i]+1)/2
  • 执行操作2,剩下变成求 [i+1,n] 这些数进行 x 次操作1,y-1次操作2后的最小元素和,即dfs(i+1,x,y-1) + nums[i] - k
  • 执行操作1和操作2,剩下变成求 [i+1,n] 这些数进行 x-1 次操作1,y-1次操作2后的最小元素和,即 dfs(i+1,x-1,y-1) + (nums[i] - k + 1)/2,同时操作时先2后1更优,(nums[i]+1)/2 - k >= (nums[i]-k+1)/2

代码如下:

class Solution {public int minArraySum(int[] nums, int k, int op1, int op2) {int n = nums.length;memo = new int[n][op1+1][op2+1];for (int[][] mat : memo) {for (int[] row : mat) {Arrays.fill(row, -1); // -1 表示没有计算过}}return dfs(0, op1, op2, k, nums);}int[][][] memo;int dfs(int i, int x, int y, int k, int[] nums){if(i == nums.length) return 0;if(memo[i][x][y] != -1) return memo[i][x][y];int res = dfs(i+1, x, y, k, nums) + nums[i];if(x > 0)res = Math.min(res, dfs(i+1, x-1, y, k, nums) + (nums[i]+1)/2);if(y > 0 && nums[i] >= k){res = Math.min(res, dfs(i+1, x, y-1, k, nums) + nums[i] - k);if(x > 0){int t = (nums[i]+1)/2 >= k ? (nums[i]+1)/2 - k : (nums[i]-k+1)/2;res = Math.min(res, dfs(i+1, x-1, y-1, k, nums) + t);}}return memo[i][x][y] = res;}
}

递推代码:

class Solution {public int minArraySum(int[] nums, int k, int op1, int op2) {int n = nums.length;int[][][] f = new int[n+1][op1+1][op2+1];for(int i=n-1; i>=0; i--){for(int x=0; x<=op1; x++){for(int y=0; y<=op2; y++){f[i][x][y] = f[i+1][x][y] + nums[i];if(x > 0)f[i][x][y] = Math.min(f[i][x][y], f[i+1][x-1][y] + (nums[i]+1)/2);if(y > 0 && nums[i] >= k){f[i][x][y] = Math.min(f[i][x][y], f[i+1][x][y-1] + nums[i] - k);if(x > 0){int t = (nums[i]+1)/2 >= k ? (nums[i]+1)/2 - k : (nums[i]-k+1)/2;f[i][x][y] = Math.min(f[i][x][y], f[i+1][x-1][y-1] + t);}}}}}return f[0][op1][op2];}
}

四,3367. 移除边之后的权重最大和

代码如下:

class Solution {public long maximizeSumOfWeights(int[][] edges, int k) {int n = edges.length;List<int[]>[] g = new ArrayList[n+1];Arrays.setAll(g, e -> new ArrayList<>());for(int[] e : edges){int x = e[0], y = e[1], val = e[2];g[x].add(new int[]{y, val});g[y].add(new int[]{x, val});}long[] f = dfs(0, -1, k, g);return f[1];//{s, s+first} f[1] >= f[0]}long[] dfs(int x, int fa, int k, List<int[]>[] g){PriorityQueue<Long> que = new PriorityQueue<>();//默认最小堆long s = 0;for(int[] y : g[x]){if(y[0] == fa) continue;long[] f = dfs(y[0], x, k, g);//选/不选 x-y 这条边 f[0]+y[1]/f[1]//选/不选 怎么在至多 选K个边 的情况下,使其最大?//先把不选的值全部求和,在求出如果选相较于不选提升了多少,//对其进行排序,选择k个提升最大的if(que.size() == k && que.peek() < f[0] + y[1] - f[1]){que.poll();}if(que.size() < k && f[0] + y[1] - f[1] > 0){que.offer(f[0] + y[1] - f[1]);}s += f[1];}long first = que.size() == k ? que.poll() : 0;while(!que.isEmpty()){s += que.poll();}return new long[]{s, s+first};}
}

 

相关文章:

Leetcode - 周赛425

目录 一&#xff0c;3364. 最小正和子数组 二&#xff0c; 3365. 重排子字符串以形成目标字符串 三&#xff0c;3366. 最小数组和 四&#xff0c;3367. 移除边之后的权重最大和 一&#xff0c;3364. 最小正和子数组 本题可以直接暴力枚举&#xff0c;代码如下&#xff1a; …...

c++(斗罗大陆2)

我把魂力等级更新到了31级 #include<iostream> #include<conio.h> #include<windows.h> #include<stdlib.h> #include<stdio.h> #include<time.h> #include<string.h> using namespace std; int qs10; int xthl0;//先…...

redis常见数据类型

Redis是一个开源的、内存中的数据结构存储系统&#xff0c;它可以用作数据库、缓存和消息代理&#xff0c;支持多种数据类型。 一、数据类型介绍 String&#xff08;字符串&#xff09; Redis中最基本的数据类型。可以存储任何类型的数据&#xff0c;包括字符串、数字和二进制…...

MySQL - 性能优化

使用 Explain 进行分析 Explain 用来分析 SELECT 查询语句&#xff0c;开发人员可以通过分析 Explain 结果来优化查询语句。 比较重要的字段有: select_type : 查询类型&#xff0c;有简单查询、联合查询、子查询等 key : 使用的索引 rows : 扫描的行数 type &#xff1a;…...

Linux进程概念-详细版(一)

目录 进程概念 描述进程-PCB task_struct-PCB的一种 task_struct内容分类 查看进程 通过系统目录查看 通过ps命令查看 通过系统调用获取进程的PID和PPID 通过系统调用创建进程 fork的认识 使用if进行分流 最后的总结 Linux进程状态 运行状态-R 浅度睡眠状态-S 深度睡…...

K8S网络系列--Flannel网络下UDP、VXLAN模式的通信流程机制分析

文章目录 前言一、了解overlay、underlay容器网络二、网络通信1.分类2.网络虚拟设备对2.1、什么是网络虚拟设备对veth pair?2.2、如何查看容器的网卡与主机的哪个veth设备对是成对的关系? 3、vxlan和vtep3.1、vtep3.2、vxlan相关概念 三、Flannel网络模式剖析0、flannel的作用…...

ThreadLocal的设计思考

问题的提出 在Java多线程中&#xff0c;共享变量的读写非常容易出现不可预测的行为&#xff0c;因此对共享变量的访问控制非常重要。因此在多线程编程时&#xff0c;为了保证线程安全&#xff0c;需要进行额外的同步措施。比如典型的操作就是加锁。除了加锁外&#xff0c;另一…...

shell脚本练习(2)

1. 使用case实现成绩优良差的判断 2. for创建20用户 用户前缀由用户输入 用户初始密码由用户输入 例如&#xff1a;test01,test10 3. for ping测试指网段的主机 网段由用户输入&#xff0c;例如用户输入192.168.2 &#xff0c;则ping 192.168.2.10 --- 192.168.2.2…...

通讯专题4.1——CAN通信之计算机网络与现场总线

从通讯专题4开始&#xff0c;来学习CAN总线的内容。 为了更好的学习CAN&#xff0c;先从计算机网络与现场总线开始了解。 1 计算机网络体系的结构 在我们生活当中&#xff0c;有许多的网络&#xff0c;如交通网&#xff08;铁路、公路等&#xff09;、通信网&#xff08;电信、…...

Harmony NEXT-越过相机读写权限上传图片至项目云存储中

问题成因 在制作用户注册登录界面时想要实现用户头像上传共能&#xff0c;查询API文档&#xff0c;发现有picker和PhotoAccessHelper两个包可以选择使用&#xff0c;但是在使用PhotoAccessHelper包拉起相册并读入所选的照片后将该照片传入云存储中产生报错&#xff0c;需要相册…...

MATLAB基础应用精讲-【数模应用】Retinex图像去雾算法(附MATLAB和python代码实现)

目录 前言 算法原理 图像去雾 数学模型 算法步骤 算法拓展 多尺度Retinex (MSR) 算法 MSR算法的实现细节 McCann Retinex 算法 McCann99 Retinex算法 基于暗通道先验的图像去雾算法 暴力解法——直方图均衡化去雾 基于Retinex理论的图像去雾 基于暗通道先验的单…...

点击A组件跳转到B页面的tab的某一列

1、使用vuex存储点击的数据&#xff1b; 点击A组件里面的button按钮&#xff1a; <div><button click"banli(first)">已办理</button><button click"banli(second)">未办理</button><button click"banli(third)&quo…...

HarmonyOS xml转换JavaScript 常用的几个方法

HarmonyOS 使用 xml转换JavaScript 的好处 易用性&#xff1a; 提供了简洁的API接口&#xff0c;使得XML到JavaScript对象的转换变得简单直接。转换选项的灵活性允许开发者根据实际需求自定义转换结果。 高效性&#xff1a; HarmonyOS对底层运行时环境进行了优化&#xff0c;使…...

Linux笔记---进程:进程等待

1. 进程等待的概念 进程等待是指父进程通过系统调用wait或waitpid来对子进程进行状态检测与回收的功能。 当子进程退出时&#xff0c;如果父进程不读取子进程的退出状态&#xff0c;子进程就会成为僵尸进程&#xff0c;造成内存泄漏的问题。因此&#xff0c;父进程需要调用wa…...

【Linux】匿名管道通信场景——进程池

&#x1f525; 个人主页&#xff1a;大耳朵土土垚 &#x1f525; 所属专栏&#xff1a;Linux系统编程 这里将会不定期更新有关Linux的内容&#xff0c;欢迎大家点赞&#xff0c;收藏&#xff0c;评论&#x1f973;&#x1f973;&#x1f389;&#x1f389;&#x1f389; 文章目…...

算法妙妙屋-------1.递归的深邃回响:全排列的奇妙组合

全排列的简要总结 全排列&#xff08;Permutation&#xff09;是数学中一个经典的问题&#xff0c;指的是从一组元素中&#xff0c;将所有元素按任意顺序排列形成的所有可能序列。 特点 输入条件&#xff1a; 给定一组互异的元素&#xff08;通常为数组或字符串&#xff09;。…...

【maven-6】Maven 生命周期相关命令演示

Maven 是一个广泛使用的项目管理工具&#xff0c;尤其在 Java 项目中。它通过定义一系列的生命周期阶段&#xff08;Phases&#xff09;来管理项目的构建过程。理解这些生命周期阶段及其相关命令&#xff0c;对于高效地构建和管理项目至关重要。本文将通过实际演示&#xff0c;…...

黑马程序员Java笔记整理(day06)

1.继承的特点 2.继承的权限 3. 4.小结 5.方法重写 6.子类构造器 7.兄弟构造器 8.多态 9.小结...

LeetCode【代码随想录】刷题(动态规划篇)

509. 斐波那契数 力扣题目链接 题目&#xff1a;斐波那契数&#xff08;通常用F(n)表示&#xff09;形成的序列称为斐波那契数列 。该数列由0和1开始&#xff0c;后面的每一项数字都是前面两项数字的和。也就是&#xff1a; F(0) 0&#xff0c;F(1) 1 F(n) F(n - 1) F(n…...

【看海的算法日记✨优选篇✨】第三回:二分之妙,寻径中道

&#x1f3ac; 个人主页&#xff1a;谁在夜里看海. &#x1f4d6; 个人专栏&#xff1a;《C系列》《Linux系列》《算法系列》 ⛰️ 一念既出&#xff0c;万山无阻 目录 &#x1f4d6;一、算法思想 细节问题 &#x1f4da;左右临界 &#x1f4da;中点选择 &#x1f4da;…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...

WebRTC调研

WebRTC是什么&#xff0c;为什么&#xff0c;如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...

轻量级Docker管理工具Docker Switchboard

简介 什么是 Docker Switchboard &#xff1f; Docker Switchboard 是一个轻量级的 Web 应用程序&#xff0c;用于管理 Docker 容器。它提供了一个干净、用户友好的界面来启动、停止和监控主机上运行的容器&#xff0c;使其成为本地开发、家庭实验室或小型服务器设置的理想选择…...