当前位置: 首页 > news >正文

深度学习常见数据集处理方法

1、数据集格式转换(json转txt)

import json
import os'''
任务:实例分割,labelme的json文件, 转txt文件
Ultralytics YOLO format
<class-index> <x1> <y1> <x2> <y2> ... <xn> <yn>
'''# 类别映射表,定义每个类别对应的ID
label_to_class_id = {"tree": 0# 根据需要添加更多类别
}# json转txt
def convert_labelme_json_to_yolo(json_file, output_dir, img_width, img_height):with open(json_file, 'r') as f:labelme_data = json.load(f)# 获取文件名(不含扩展名)file_name = os.path.splitext(os.path.basename(json_file))[0]# 输出的txt文件路径txt_file_path = os.path.join(output_dir, f"{file_name}.txt")with open(txt_file_path, 'w') as txt_file:for shape in labelme_data['shapes']:label = shape['label']points = shape['points']# 根据类别映射表获取类别ID,如果类别不在映射表中,跳过该标签class_id = label_to_class_id.get(label)if class_id is None:print(f"Warning: Label '{label}' not found in class mapping. Skipping.")continue# 将点的坐标归一化到0-1范围normalized_points = [(x / img_width, y / img_height) for x, y in points]# 写入类别IDtxt_file.write(f"{class_id}")# 写入多边形掩膜的所有归一化顶点坐标for point in normalized_points:txt_file.write(f" {point[0]:.6f} {point[1]:.6f}")txt_file.write("\n")if __name__ == "__main__":json_dir = "json"  # 替换为LabelMe标注的JSON文件目录output_dir = "labels"  # 输出的YOLO格式txt文件目录img_width = 500   # 图像宽度,根据实际图片尺寸设置img_height = 500  # 图像高度,根据实际图片尺寸设置# 创建输出文件夹if not os.path.exists(output_dir):os.makedirs(output_dir)# 批量处理所有json文件for json_file in os.listdir(json_dir):if json_file.endswith(".json"):json_path = os.path.join(json_dir, json_file)convert_labelme_json_to_yolo(json_path, output_dir, img_width, img_height)

2、数据集扩充(带json标签)

import time
import random
import cv2
import os
import numpy as np
from skimage.util import random_noise
import base64
import json
import re
from copy import deepcopy
import argparseclass DataAugmentForObjectDetection():#代码中包含五中数据增强的手段(噪声,光线,改变像素点,平移,镜像,打开后的数据增强为True,取消为False)def __init__(self, change_light_rate=0.5,add_noise_rate=0.2, random_point=0.5, flip_rate=0.5, shift_rate=0.5, rand_point_percent=0.03,is_addNoise=True, is_changeLight=False, is_random_point=True, is_shift_pic_bboxes=True,is_filp_pic_bboxes=True):self.change_light_rate = change_light_rateself.add_noise_rate = add_noise_rateself.random_point = random_pointself.flip_rate = flip_rateself.shift_rate = shift_rateself.rand_point_percent = rand_point_percent# 是否使用某种增强方式self.is_addNoise = is_addNoiseself.is_changeLight = is_changeLightself.is_random_point = is_random_pointself.is_filp_pic_bboxes = is_filp_pic_bboxesself.is_shift_pic_bboxes = is_shift_pic_bboxes# 加噪声(随机噪声)def _addNoise(self, img):return random_noise(img, seed=int(time.time())) * 255# 调整亮度def _changeLight(self, img):alpha = random.uniform(0.35, 1)blank = np.zeros(img.shape, img.dtype)return cv2.addWeighted(img, alpha, blank, 1 - alpha, 0)# 随机的改变点的值def _addRandPoint(self, img):percent = self.rand_point_percentnum = int(percent * img.shape[0] * img.shape[1])for i in range(num):rand_x = random.randint(0, img.shape[0] - 1)rand_y = random.randint(0, img.shape[1] - 1)if random.randint(0, 1) == 0:img[rand_x, rand_y] = 0else:img[rand_x, rand_y] = 255return img# 平移图像(注:需要到labelme工具上调整图像,部分平移的标注框可能会超出图像边界,对训练造成影响)def _shift_pic_bboxes(self, img, json_info):h, w, _ = img.shapex_min = wx_max = 0y_min = hy_max = 0shapes = json_info['shapes']for shape in shapes:points = np.array(shape['points'])x_min = min(x_min, points[:, 0].min())y_min = min(y_min, points[:, 1].min())x_max = max(x_max, points[:, 0].max())y_max = max(y_max, points[:, 0].max())d_to_left = x_mind_to_right = w - x_maxd_to_top = y_mind_to_bottom = h - y_maxx = random.uniform(-(d_to_left - 1) / 3, (d_to_right - 1) / 3)y = random.uniform(-(d_to_top - 1) / 3, (d_to_bottom - 1) / 3)M = np.float32([[1, 0, x], [0, 1, y]])shift_img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))for shape in shapes:for p in shape['points']:p[0] += xp[1] += yreturn shift_img, json_info# 图像镜像翻转def _filp_pic_bboxes(self, img, json_info):h, w, _ = img.shapesed = random.random()if 0 < sed < 0.33:flip_img = cv2.flip(img, 0)  # _flip_xinver = 0elif 0.33 < sed < 0.66:flip_img = cv2.flip(img, 1)  # _flip_yinver = 1else:flip_img = cv2.flip(img, -1)  # flip_x_yinver = -1shapes = json_info['shapes']for shape in shapes:for p in shape['points']:if inver == 0:p[1] = h - p[1]elif inver == 1:p[0] = w - p[0]elif inver == -1:p[0] = w - p[0]p[1] = h - p[1]return flip_img, json_infodef dataAugment(self, img, dic_info):change_num = 0while change_num < 1:if self.is_changeLight:if random.random() > self.change_light_rate:change_num += 1img = self._changeLight(img)if self.is_addNoise:if random.random() < self.add_noise_rate:change_num += 1img = self._addNoise(img)if self.is_random_point:if random.random() < self.random_point:change_num += 1img = self._addRandPoint(img)if self.is_shift_pic_bboxes:if random.random() < self.shift_rate:change_num += 1img, dic_info = self._shift_pic_bboxes(img, dic_info)if self.is_filp_pic_bboxes or 1:if random.random() < self.flip_rate:change_num += 1img, bboxes = self._filp_pic_bboxes(img, dic_info)return img, dic_infoclass ToolHelper():# 从json文件中提取原始标定的信息def parse_json(self, path):with open(path)as f:json_data = json.load(f)return json_data# 对图片进行字符编码def img2str(self, img_name):with open(img_name, "rb")as f:base64_data = str(base64.b64encode(f.read()))match_pattern = re.compile(r'b\'(.*)\'')base64_data = match_pattern.match(base64_data).group(1)return base64_data# 保存图片结果def save_img(self, save_path, img):cv2.imwrite(save_path, img)# 保持json结果def save_json(self, file_name, save_folder, dic_info):with open(os.path.join(save_folder, file_name), 'w') as f:json.dump(dic_info, f, indent=2)if __name__ == '__main__':need_aug_num = 5  #每张图片需要增强的次数toolhelper = ToolHelper()is_endwidth_dot = True  #文件是否以.jpg或者png结尾dataAug = DataAugmentForObjectDetection()parser = argparse.ArgumentParser()parser.add_argument('--source_img_json_path', type=str, default=r'/home/leeqianxi/YOLO/datasets/data/data')#需要更改的json地址parser.add_argument('--save_img_json_path', type=str, default=r'/home/leeqianxi/YOLO/datasets/data/new_data')#改变后的json保存地址args = parser.parse_args()source_img_json_path = args.source_img_json_path  # 图片和json文件原始位置save_img_json_path = args.save_img_json_path  # 图片增强结果保存文件# 如果保存文件夹不存在就创建if not os.path.exists(save_img_json_path):os.mkdir(save_img_json_path)for parent, _, files in os.walk(source_img_json_path):files.sort()  # 排序一下for file in files:if file.endswith('jpg') or file.endswith('png'):cnt = 0pic_path = os.path.join(parent, file)json_path = os.path.join(parent, file[:-4] + '.json')json_dic = toolhelper.parse_json(json_path)# 如果图片是有后缀的if is_endwidth_dot:# 找到文件的最后名字dot_index = file.rfind('.')_file_prefix = file[:dot_index]  # 文件名的前缀_file_suffix = file[dot_index:]  # 文件名的后缀img = cv2.imread(pic_path)while cnt < need_aug_num:  # 继续增强auged_img, json_info = dataAug.dataAugment(deepcopy(img), deepcopy(json_dic))img_name = '{}_{}{}'.format(_file_prefix, cnt + 1, _file_suffix)  # 图片保存的信息img_save_path = os.path.join(save_img_json_path, img_name)toolhelper.save_img(img_save_path, auged_img)  # 保存增强图片json_info['imagePath'] = img_namebase64_data = toolhelper.img2str(img_save_path)json_info['imageData'] = base64_datatoolhelper.save_json('{}_{}.json'.format(_file_prefix, cnt + 1),save_img_json_path, json_info)  # 保存xml文件print(img_name)cnt += 1  # 继续增强下一张

 3、数据集划分(训练集、测试集、验证集)

# 将图片和标注数据按比例切分为 训练集和测试集
import shutil
import random
import os# 原始路径
image_original_path = "/home/leeqianxi/YOLO/ultralytics/pic/"
label_original_path = "/home/leeqianxi/YOLO/ultralytics/labels/"cur_path = os.getcwd()
# 训练集路径
train_image_path = os.path.join(cur_path, "datasets/images/train/")
train_label_path = os.path.join(cur_path, "datasets/labels/train/")# 验证集路径
val_image_path = os.path.join(cur_path, "datasets/images/val/")
val_label_path = os.path.join(cur_path, "datasets/labels/val/")# 测试集路径
test_image_path = os.path.join(cur_path, "datasets/images/test/")
test_label_path = os.path.join(cur_path, "datasets/labels/test/")# 训练集目录
list_train = os.path.join(cur_path, "datasets/train.txt")
list_val = os.path.join(cur_path, "datasets/val.txt")
list_test = os.path.join(cur_path, "datasets/test.txt")train_percent = 0.8
val_percent = 0.2
test_percent = 0def del_file(path):for i in os.listdir(path):file_data = path + "\\" + ios.remove(file_data)def mkdir():if not os.path.exists(train_image_path):os.makedirs(train_image_path)else:del_file(train_image_path)if not os.path.exists(train_label_path):os.makedirs(train_label_path)else:del_file(train_label_path)if not os.path.exists(val_image_path):os.makedirs(val_image_path)else:del_file(val_image_path)if not os.path.exists(val_label_path):os.makedirs(val_label_path)else:del_file(val_label_path)if not os.path.exists(test_image_path):os.makedirs(test_image_path)else:del_file(test_image_path)if not os.path.exists(test_label_path):os.makedirs(test_label_path)else:del_file(test_label_path)def clearfile():if os.path.exists(list_train):os.remove(list_train)if os.path.exists(list_val):os.remove(list_val)if os.path.exists(list_test):os.remove(list_test)def main():mkdir()clearfile()file_train = open(list_train, 'w')file_val = open(list_val, 'w')file_test = open(list_test, 'w')total_txt = os.listdir(label_original_path)num_txt = len(total_txt)list_all_txt = range(num_txt)num_train = int(num_txt * train_percent)num_val = int(num_txt * val_percent)num_test = num_txt - num_train - num_valtrain = random.sample(list_all_txt, num_train)# train从list_all_txt取出num_train个元素# 所以list_all_txt列表只剩下了这些元素val_test = [i for i in list_all_txt if not i in train]# 再从val_test取出num_val个元素,val_test剩下的元素就是testval = random.sample(val_test, num_val)print("训练集数目:{}, 验证集数目:{}, 测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))for i in list_all_txt:name = total_txt[i][:-4]srcImage = image_original_path + name + '.png'srcLabel = label_original_path + name + ".txt"if i in train:dst_train_Image = train_image_path + name + '.png'dst_train_Label = train_label_path + name + '.txt'shutil.copyfile(srcImage, dst_train_Image)shutil.copyfile(srcLabel, dst_train_Label)file_train.write(dst_train_Image + '\n')elif i in val:dst_val_Image = val_image_path + name + '.png'dst_val_Label = val_label_path + name + '.txt'shutil.copyfile(srcImage, dst_val_Image)shutil.copyfile(srcLabel, dst_val_Label)file_val.write(dst_val_Image + '\n')else:dst_test_Image = test_image_path + name + '.jpg'dst_test_Label = test_label_path + name + '.txt'shutil.copyfile(srcImage, dst_test_Image)shutil.copyfile(srcLabel, dst_test_Label)file_test.write(dst_test_Image + '\n')file_train.close()file_val.close()file_test.close()if __name__ == "__main__":main()

4、图像裁剪为固定大小

from PIL import Image
import osdef crop_image(image_path, output_dir, crop_c, crop_size=(500, 500)):# 打开原始图片img = Image.open(image_path)img_width, img_height = img.sizecrop_width, crop_height = crop_size# 确保输出目录存在if not os.path.exists(output_dir):os.makedirs(output_dir)# 计算可以裁剪的行数和列数horizontal_crops = img_width // crop_widthvertical_crops = img_height // crop_height# 裁剪并保存子图crop_count = crop_cfor i in range(vertical_crops):for j in range(horizontal_crops):left = j * crop_widthupper = i * crop_heightright = left + crop_widthlower = upper + crop_height# 裁剪图像cropped_img = img.crop((left, upper, right, lower))# 保存裁剪后的图像output_path = os.path.join(output_dir, f"crop_{crop_count+1}.png")cropped_img.save(output_path)crop_count += 1print(f"裁剪完成,共裁剪 {crop_count} 张图片。")if __name__ == "__main__":image_path = "img.png"  # 输入图片的路径output_dir = 'cropped_images'  # 输出文件夹路径crop_c = 0crop_image(image_path, output_dir, crop_c)

相关文章:

深度学习常见数据集处理方法

1、数据集格式转换&#xff08;json转txt&#xff09; import json import os 任务&#xff1a;实例分割&#xff0c;labelme的json文件, 转txt文件 Ultralytics YOLO format <class-index> <x1> <y1> <x2> <y2> ... <xn> <yn> # 类…...

1180 - 【入门】数字出现次数

题目描述 有50个数&#xff08;0-19&#xff09;&#xff0c;求这50个数中相同数字出现的最多次数为几次&#xff1f; 输入 50个数字 输出 1个数字&#xff08;即相同数字出现的最多次数&#xff09; 样例 输入 复制 1 10 2 0 15 8 12 7 0 3 15 0 15 18 16 7 17 16 9 …...

C++20: 像Python一样split字符串

概要 Python 的字符串天生支持 split( ) 操作&#xff0c;支持单个字符或字符串作为分隔符。 C 在这方面显得很笨拙&#xff0c;但是在 C20 下经过一番尝试&#xff0c;还是能够提供类似的简洁调用。 Python 代码 s 0,11,336,23,370nums s.split(,) for n in nums:print(n…...

Unity3D UI 嵌套滚动视图

Unity3D 解决 UI 嵌套滚动视图滑动问题。 嵌套滚动视图 滑动问题 在游戏开发中&#xff0c;我们常常会遇到一种情况&#xff0c;在一个滚动视图列表中&#xff0c;每个 item 还包含了一个内嵌的滚动视图。 这样&#xff0c;当我们在滑动外层的滚动视图时&#xff0c;如果点…...

你还没有将 Siri 接入GPT对话功能吗?

由于各种原因&#xff0c;国内ios用户目前无缘自带 AI 功能&#xff0c;但是这并不代表国内 ios 无法接入 AI 功能&#xff0c;接下来手把手带你为iPhone siri 接入 gpt 对话功能。 siri 接入 chatGPT 暂时还无法下载 ChatGPT app&#xff0c;或者没有账号的读者可以直接跳到…...

_C#_串口助手_字符串拼接缺失问题(未知原理)

最近使用WPF开发串口助手时&#xff0c;遇到一个很奇怪的问题&#xff0c;无论是主线程、异步还是多线程&#xff0c;当串口接收速度达到0.016s一次以上&#xff0c;就会发生字符串缺失问题并且很卡。而0.016s就一切如常&#xff0c;仿佛0.015s与0.016s是天堑之隔。 同一份代码…...

浅析大数据时代下的网络安全

一、大数据时代下网络安全的现状 在全球化进程不断深入发展的情况下&#xff0c;互联网行业发展速度也更加迅猛&#xff0c;人们对网络信息的需求量不断增加&#xff0c;所以目前已经进入了大数据时代。 随着计算机技术的不断发展&#xff0c;我国互联网网络规模、网民数量、…...

Mysql数据库基础篇笔记

目录 sql语句 DDL——数据库定义语言&#xff08;定义库&#xff0c;表&#xff0c;字段&#xff09; 数据库操作&#xff1a; 表操作&#xff1a; DML 增删改语句 DQL 语法编写顺序&#xff1a; 条件查询 DCL 用户管理&#xff1a; 权限管理&#xff1a; 函数 常见字符串内置函…...

rabbitmq原理及命令

目录 一、RabbitMQ原理1、交换机&#xff08;Exchange&#xff09;fanoutdirecttopicheaders&#xff08;很少用到&#xff09; 2、队列Queue3、Virtual Hosts4、基础对象 二、RabbitMQ的一些基本操作:1、用户管理2、用户角色3、vhost4、开启web管理接口5、批量删除队列 一、Ra…...

React进阶面试题(四)

React 的 reconciliation&#xff08;协调&#xff09;算法 Reconciliation是React的diff算法&#xff0c;用于比较更新前后的虚拟DOM树差异&#xff0c;从而使用最小的代价将原始DOM按照新的状态、属性进行更新。其目的是找出两棵树的差异&#xff0c;原生方式直接比较复杂度…...

24/12/1 算法笔记<强化学习> 创建Maze交互

我们今天制作一个栅格的游戏。 我们直接上代码教学。 1.载入库和查找相应的函数版本 import numpy as np import time import sysif sys.version_info.major 2:import Tkinter as tk else:import tkinter as tk 2.设置长宽和单元格大小 UNIT 40 MAZE_H 4 MAZE_W 4 3.初始…...

Linux驱动开发(10):I2C子系统–mpu6050驱动实验

本章我们以板载MPU6050为例讲解i2c驱动程序的编写&#xff0c;本章主要分为五部分内容。 第一部分&#xff0c;i2c基本知识&#xff0c;回忆i2c物理总线和基本通信协议。 第二部分&#xff0c;linux下的i2c驱动框架。 第三部分&#xff0c;i2c总线驱动代码拆解。 第四部分&a…...

《装甲车内气体检测“神器”:上海松柏 K-5S 电化学传感器模组详解》

《装甲车内气体检测“神器”:上海松柏 K-5S 电化学传感器模组详解》 一、引言二、K-5S 电化学传感器模组概述&#xff08;一&#xff09;产品简介&#xff08;二&#xff09;产品特点&#xff08;三&#xff09;产品适用场景 三、电化学传感器原理及优点&#xff08;一&#xf…...

如何将多个JS文件打包成一个JS文件?

文章目录 前言SDK 打包安装 webpack创建 webpack.config.js编译命令行遇到的坑点前言 上一篇已经记录了如何开发一个小游戏聚合SDK,既然是SDK,最终都是给外部人员使用的。调研了一下市面上的前端SDK,最终都是编译成一个 js 文件。我猜理由大概是 js 文件之间的调用都是需要…...

100个python经典面试题详解(新版)

应老粉要求,每晚加餐一个最新面试题 包括Python面试中常见的问题,涵盖列表、元组、字符串插值、比较操作符、装饰器、类与对象、函数调用方式、数据结构操作、序列化、数据处理函数等多个方面。 旨在帮助数据科学家和软件工程师准备面试或提升Python技能。 7、Python面试题…...

C#初阶概念理解

​​​​​​​ 梳理了一些本人在学习C#时的一些生疏点&#xff0c;同时也加深自己的印象。 堆&栈 堆用来存储程序运行时产生的变量&#xff0c;当程序结束时释放&#xff1b; 栈用来存储程序运行时&#xff0c;调用方法产生的临时变量&#xff0c;方法运行完成后就会释放…...

node.js基础学习-url模块-url地址处理(二)

前言 前面我们创建了一个HTTP服务器&#xff0c;如果只是简单的http://localhost:3000/about这种链接我们是可以处理的&#xff0c;但是实际运用中一般链接都会带参数&#xff0c;这样的话如果我们只是简单的判断链接来分配数据&#xff0c;就会报404找不到链接。为了解决这个问…...

算法与数据结构(1)

一&#xff1a;数据结构概论 数据结构分为初阶数据结构&#xff08;主要由C语言实现&#xff09;和高阶数据结构&#xff08;由C实现&#xff09; 初阶数据结构当中&#xff0c;我们会学到顺序表、链表、栈和队列、二叉树、常见排序算法等内容。 高阶数据结构当中&#xff0…...

FTP介绍与配置

前言&#xff1a; FTP是用来传送文件的协议。使用FTP实现远程文件传输的同时&#xff0c;还可以保证数据传输的可靠性和高效性。 介绍 FTP的应用 在企业网络中部署一台FTP服务器&#xff0c;将网络设备配置为FTP客户端&#xff0c;则可以使用FTP来备份或更新VRP文件和配置文件…...

SQL面试题——抖音SQL面试题 最近一笔有效订单

最近一笔有效订单 题目背景如下,现有订单表order,包含订单ID,订单时间,下单用户,当前订单是否有效 +---------+----------------------+----------+-----------+ | ord_id | ord_time | user_id | is_valid | +---------+----------------------+--------…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...