A-star算法
算法简介
A*(A-star)算法是一种用于图形搜索和路径规划的启发式搜索算法,它结合了最佳优先搜索(Best-First Search)和Dijkstra算法的思想,能够有效地寻找从起点到目标点的最短路径。A*算法广泛应用于导航、游戏AI、机器人路径规划等领域。
代码说明
Node类:表示搜索过程中的一个节点,包含位置、从起点到当前节点的代价 (g)、从当前节点到目标节点的启发式代价 (h),以及父节点用于回溯路径。
A算法:astar函数实现了A算法的核心逻辑。通过开放列表优先队列不断从代价最小的节点扩展,直到找到目标节点。
启发式函数:heuristic使用曼哈顿距离作为启发式代价,适用于网格布局。
邻居节点:get_neighbors返回当前节点的四个邻居(上下左右)。
代码
import heapqclass Node:def __init__(self, position, g=0, h=0):self.position = position # 坐标 (x, y)self.g = g # 从起点到当前节点的代价self.h = h # 从当前节点到目标节点的预估代价(启发式估计)self.f = g + h # 总代价self.parent = None # 记录父节点def __lt__(self, other):return self.f < other.f # 优先队列按 f 值排序def astar(start, goal, grid):# 创建开放列表(优先队列)和闭合列表open_list = []closed_list = set()# 将起点添加到开放列表start_node = Node(start, 0, heuristic(start, goal))heapq.heappush(open_list, start_node)while open_list:# 从开放列表中取出代价最小的节点current_node = heapq.heappop(open_list)# 如果目标已经找到,返回路径if current_node.position == goal:path = []while current_node:path.append(current_node.position)current_node = current_node.parentreturn path[::-1] # 返回反转后的路径# 将当前节点添加到闭合列表closed_list.add(current_node.position)# 获取相邻节点neighbors = get_neighbors(current_node.position)for neighbor in neighbors:if neighbor in closed_list:continue # 如果相邻节点已经被处理过,跳过g_cost = current_node.g + 1 # 假设每步的代价为1h_cost = heuristic(neighbor, goal)neighbor_node = Node(neighbor, g_cost, h_cost)neighbor_node.parent = current_node# 如果相邻节点不在开放列表中,加入开放列表heapq.heappush(open_list, neighbor_node)return None # 如果没有路径,返回 Nonedef heuristic(node, goal):# 计算启发式代价(这里使用曼哈顿距离)return abs(node[0] - goal[0]) + abs(node[1] - goal[1])def get_neighbors(position):# 获取当前节点的相邻节点(上下左右)x, y = positionreturn [(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)]if __name__ == "__main__":start = (0, 0) # 起点goal = (4, 4) # 目标点grid = [[0 for _ in range(5)] for _ in range(5)] # 假设网格,0表示可行走区域path = astar(start, goal, grid)print("找到的路径:", path)
相关文章:

A-star算法
算法简介 A*(A-star)算法是一种用于图形搜索和路径规划的启发式搜索算法,它结合了最佳优先搜索(Best-First Search)和Dijkstra算法的思想,能够有效地寻找从起点到目标点的最短路径。A*算法广泛应用于导航、…...

前端用原生js下载File对象文件,多用于上传附件时,提交之前进行点击预览,或打开本地已经选择待上传的附件列表
用于如上图场景,已经点击选择了将要上传的文件,在附件列表里面用户希望点击下载文件,以核实自己是否选中了需要上传的文件,此刻就需要 用到下面的方法: // 下载File对象文件 downloadByFileObject(file, { fileName }…...
服务器记录所有用户docker操作,监控删除容器/镜像的人
文章目录 使用场景安装auditd添加docker审计规则设置监控日志大小与定期清除查询 Docker 操作日志查看所有用户,所有操作日志查看特定用户的 Docker 操作查看所有用户删除容器/镜像日志过滤特定时间范围内日志 使用场景 多人使用的服务器,使用的docker …...

关于使用天地图、leaflet、ENVI、Vue工具实现 前端地图上覆盖上处理的农业地块图层任务
1.项目框架搭建 项目地址:Webgis: 一个关于webgis、天地图、Leaflet、Vue、数据库的学习框架。 ①git到本地,vscode打开。 ② 配置后端 搜索下载MySQL插件(前提:电脑中装有MySQL才可应用)。 连接数据库。 配置基本…...

基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
目录 1.算法仿真效果 2.算法涉及理论知识概要 3.MATLAB核心程序 4.完整算法代码文件获得 1.算法仿真效果 matlab2022a仿真结果如下(完整代码运行后无水印): 仿真操作步骤可参考程序配套的操作视频。 2.算法涉及理论知识概要 在现代社会…...

用 React 编写一个笔记应用程序
这篇文章会教大家用 React 编写一个笔记应用程序。用户可以创建、编辑、和切换 Markdown 笔记。 1. nanoid nanoid 是一个轻量级和安全的唯一字符串ID生成器,常用于JavaScript环境中生成随机、唯一的字符串ID,如数据库主键、会话ID、文件名等场景。 …...

如何离线安装dockerio
如何离线安装dockerio 一、下载Docker离线安装包二、上传离线安装包三、解压安装包四、复制文件到系统目录五、配置Docker服务六、设置文件权限并重新加载配置七、启动Docker服务八、设置开机自启动九、验证安装Docker是一个开源的容器化平台,用于开发、发布和运行应用程序。离…...

LocalDateTime序列化(跟redis有关)
使用过 没成功,序列化后是[2024 11 10 17 22 20]差不多是这样, 反序列化后就是: [ 2024 11 10.... ] 可能是我漏了什么 这是序列化后的: 反序列化后: 方法(加序列化和反序列化注解)&…...
【redis】如何跑
在 Windows 上配置 Redis 需要一些额外的步骤,因为 Redis 官方并没有为 Windows 提供原生支持。不过,可以通过以下方法来安装和配置 Redis。 方法一:使用 Windows 版 Redis(非官方版本) 下载 Redis for Windows Redis…...

Scala学习记录,全文单词统计
package test32 import java.io.PrintWriter import scala.io.Source //知识点 // 字符串.split("分隔符":把字符串用指定的分隔符,拆分成多个部分,保存在数组中) object test {def main(args: Array[String]): Unit {//从文件1.t…...

【MyBatis】验证多级缓存及 Cache Aside 模式的应用
文章目录 前言1. 多级缓存的概念1.1 CPU 多级缓存1.2 MyBatis 多级缓存 2. MyBatis 本地缓存3. MyBatis 全局缓存3.1 MyBatis 全局缓存过期算法3.2 CacheAside 模式 后记MyBatis 提供了缓存切口, 采用 Redis 会引入什么问题?万一遇到需强一致场景&#x…...

学习ASP.NET Core的身份认证(基于Session的身份认证3)
开源博客项目Blog中提供了另一种访问控制方式,其基于自定义类及函数的特性类控制访问权限。本文学习并测试开源博客项目Blog的访问控制方式,测试程序中直接复用开源博客项目Blog中的相关类及接口定义,并在其上调整判断逻辑。 首先是接口A…...
速盾:高防 CDN 可以配置客户端请求超时配置?
在高防 CDN(Content Delivery Network,内容分发网络)的运行管理中,客户端请求超时配置是一项重要的功能设定,它对于优化网络资源分配、保障服务质量以及维护系统稳定性有着关键意义。 一、客户端请求超时配置的概念 …...

DRM(数字权限管理技术)防截屏录屏----ffmpeg安装
提示:ffmpeg安装 文章目录 [TOC](文章目录) 前言一、下载二、配置环境变量三、运行ffmpeg四、文档总结 前言 FFmpeg是一套可以用来记录、转换数字音频、视频,并能将其转化为流的开源计算机程序。采用LGPL或GPL许可证。它提供了录制、转换以及流化音视频的…...

使用PyQt5开发一个GUI程序的实例演示
一、安装Python 下载安装到这个目录 G:\Python38-32 安装完成有这些工具,后面备用: G:\Python38-32\Scripts\pyrcc5.exe G:\Python38-32\Scripts\pyuic5.exe 二、PyQt环境配置 pip install PyQt5 pip install pyqt5-tools 建议使用国内源,…...
【VUE3】【Naive UI】<NCard> 标签
【Vue3】【Naive UI】 标签 title 属性bordered 属性header-style 和 body-style 属性footer 属性actions 属性hoverable 属性loading 属性size 属性type 属性cover 和 avatar 属性description 属性style 属性 【VUE3】【Naive UI】<NCard> 标签 【VUE3】…...
选择排序之大根堆
大根堆:树的根节点大于左右子树的结点值,这样就能保证每次从树根取的是最大值 灵魂在于HeadAdjust函数,以某节点为树根通过下落调整为大根堆, 建树思想 就是,从最后一个非终端结点开始调整以该结点为根的子树&#x…...

AI的魔力:如何为开源软件注入智慧,开启无限可能
“AI的魔力:如何为开源软件注入智慧,开启无限可能” 引言: 在科技发展的浪潮中,开源软件生态一直扮演着推动创新与共享的重要角色。从Linux到Python,开源项目赋予了开发者全球协作的机会,推动了技术的飞速…...
如何在 VPS 上使用 Git 设置自动部署
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 介绍 要了解 Git 的基本知识以及如何安装,请参考介绍教程。 本文将教你如何在部署应用程序时使用 Git。虽然有许多使用 Gi…...

Linux下的三种 IO 复用
目录 一、Select 1、函数 API 2、使用限制 3、使用 Demo 二、Poll 三、epoll 0、 实现原理 1、函数 API 2、简单代码模板 3、LT/ET 使用过程 (1)LT 水平触发 (2)ET边沿触发 4、使用 Demo 四、参考链接 一、Select 在…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...

Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...

LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...
vue3 daterange正则踩坑
<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态
前言 在人工智能技术飞速发展的今天,深度学习与大模型技术已成为推动行业变革的核心驱动力,而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心,系统性地呈现了两部深度技术著作的精华:…...

【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...