【深度学习】四大图像分类网络之AlexNet
AlexNet是由Alex Krizhevsky、Ilya Sutskever(均为Hinton的学生)和Geoffrey Hinton(被誉为”人工智能教父“,首先将反向传播用于多层神经网络)在2012年ImageNet图像分类竞赛中提出的一种经典的卷积神经网络。AlexNet在 ImageNet 大规模视觉识别竞赛中取得了优异的成绩,把深度学习模型在比赛中的正确率提升到一个前所未有的高度,它的出现对深度学习发展具有里程碑式的意义。论文在写作过程中并没有提及将本网络架构称为AlexNet,而是后来人们将一作作者的名字融入,称为AlexNet。
论文原文:ImageNet Classification with Deep Convolutional Neural Networks
本文将首先介绍 AlexNet 的基本结构,然后讲述AlexNet的创新点,最后给出了基于pytorch的AlexNet代码实现。
一、AlexNet基本结构
AlexNet输入为RGB三通道的224 × 224 × 3大小的图像,共包含5 个卷积层和 3 个全连接层。其中,每个卷积层都包含卷积核、偏置项、ReLU激活函数。而第1、2、5个卷积层后面都跟着一个最大池化层(Max Pooling Layer),第1、2个卷积层后跟着局部响应归一化(LRN)模块,后面三个层为全连接层,最终输出层为softmax,将网络输出转化为概率值,用于预测图像的类别。
下图是AlexNet的网络结构图,从中可以看到网络结构在部署的时候采用的是双GPU方式,但是随着并行计算等算法的出现,这种方式也变得麻烦且不高效,一般不会采用。
各层网络参数设置
输入尺寸 | 卷积/池化核尺寸 | 步长stride | 填充padding | 输出尺寸 | |
卷积层C1(ReLU) | 224 × 224 × 3 | 11×11×3(96个) | 4 | 0 | 55×55×48(一对) |
最大池化层 | 55×55×48(一对) | 3×3 | 2 | 0 | 27×27×48(一对) |
LRN | |||||
卷积层C2(ReLU) | 27×27×48(一对) | 5× 5×48(256个) | 1 | 2 | 27×27×128(一对) |
最大池化层 | 27×27×128(一对) | 3×3 | 2 | 0 | 13×13×128(一对) |
LRN | |||||
卷积层C3(ReLU) | 13×13×128(一对) | 3×3×256(384个) | 1 | 1 | 13×13×192(一对) |
卷积层C4(ReLU) | 13×13×192(一对) | 3×3x192(384个) | 1 | 1 | 13×13×192(一对) |
卷积层C5(ReLU) | 13×13×192(一对) | 3×3 ×192(256个) | 1 | 1 | 13×13×128(一对) |
最大池化层 | 13×13×128(一对) | 3×3 | 2 | 0 | 6×6×128(一对) |
全连接层FC6(ReLU) | 6×6×128(一对) | 6×6×256(4096个) | 1 | 0 | 1×1×4096 |
全连接层FC7 (ReLU) | 1×1×4096 | / | / | / | 1×1×4096 |
全连接层FC8(softmax) | 1×1×4096 | / | / | / | 1×1×1000 |
二、 创新点
1、更深的神经网络结构
AlexNet 是首个真正意义上的深度卷积神经网络,它的深度达到了当时先前神经网络的数倍。通过增加网络深度,AlexNet 能够更好地学习数据集的特征,从而提高了图像分类的精度。
2. 使用ReLU作为激活函数
ReLU(Rectified Linear Unit)是一种非线性激活函数,尽管它的表达式看起来简单:f(x)=max(0,x) ,可能会认为正值部分是线性的,因此 ReLU 整体上也是线性的。然而,它实际上是非线性的,这是因为它改变了输入输出之间的关系。首先是,分段定义导致非线性。ReLU 的定义分为两部分:
虽然 y=x 是线性的,但当 y=0 和 y=x 拼接在一起时,整个函数变得非线性,因为它在 x=0 的位置发生了“转折”(即斜率不再连续)。其次是,破坏线性叠加性。如果一个神经网络中所有的操作(权重乘积、加法)都是线性的,那么无论堆叠多少层,最终的输出仍然是输入的线性变换。这会导致网络无法拟合复杂的非线性数据。ReLU 通过其分段特性(在某些输入上输出为 0)破坏了线性叠加性:
这使得网络能够通过组合多个 ReLU 激活函数来表示复杂的非线性函数。最后是,梯度的非线性行为。ReLU 的导数(梯度)如下:
这种分段的梯度行为在反向传播时也是非线性的,在某些区域梯度为 0,这意味着这些区域的权重不会被更新;在其他区域梯度为 1,权重会正常更新。这种选择性更新(由梯度的非线性决定)进一步增强了网络的非线性建模能力。
知道了为什么ReLU函数也是一种非线性激活函数之后,我们看一下ReLU函数的优点。相比于传统的sigmoid和 tanh 函数,ReLU 能够在保持计算速度的同时,有效地解决了梯度消失问题,从而使得训练更加高效。观察sigmoid和 tanh 函数,我们可以看到,当x变得很大或很小时,梯度几乎为0,也就出现了梯度消失的现象,当梯度消失发生时,最后一个隐层梯度更新基本正常,但是越往前的隐层内更新越慢,甚至有可能会出现停滞,此时,多层深度神经网络可能会退化为浅层的神经网络(只有后面几层在学习),因为浅层基本没有学习,对输入仅仅做了一个映射而已,从而导致了浅层网络的参数发生了变化微弱。
3. 局部响应归一化(LRN)的使用
LRN是在卷积层和池化层之间添加的一种归一化操作。在卷积层中,每个卷积核都对应一个特征图,LRN就是对这些特征图进行归一化。对于每个特征图上的每个位置,计算该位置周围的像素的平方和,然后将当前位置的像素值除以这个和。计算过程可以用以下公式表示:
LRN本质是抑制邻近神经元的响应(侧抑制),从而增强了神经元的较大响应。这种技术在一定程度上能够避免过拟合,并提高网络的泛化能力。现在通常不会被使用,有更多其他的归一化方式。
4、数据增强和Dropout(训练技巧)
为了防止过拟合,AlexNet 引入了数据增强和 Dropout 技术。数据增强可以通过对图像进行旋转、翻转、裁剪等变换,增加训练数据的多样性,提高模型的泛化能力。Dropout 则是在训练过程中随机删除一定比例的神经元,强制网络学习多个互不相同的子网络,从而提高网络的泛化能力。Dropout简单来说就是在前向传播的时候,让某个神经元的激活值以一定的概率p丢失,这样可以使模型泛化性更强,因为它不会太依赖某些局部的特征。
三、 代码
网络构建代码如下:(model.py)
import torch.nn as nn
import torch.utils.model_zoo as model_zoo__all__ = ['AlexNet', 'alexnet']model_urls = {'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth',
}class AlexNet(nn.Module):def __init__(self, num_classes=1000):super(AlexNet, self).__init__()self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(64, 192, kernel_size=5, padding=2),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(192, 384, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(384, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),)self.classifier = nn.Sequential(nn.Dropout(),nn.Linear(256 * 6 * 6, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Linear(4096, num_classes),)def forward(self, x):x = self.features(x)x = x.view(x.size(0), 256 * 6 * 6) #进行展平x = self.classifier(x)return xdef alexnet(pretrained=False, model_root=None, **kwargs):model = AlexNet(**kwargs)if pretrained:model.load_state_dict(model_zoo.load_url(model_urls['alexnet'], model_root))return model
参考资料:
卷积神经网络经典回顾之AlexNet - 知乎https://zhuanlan.zhihu.com/p/61854575724 深度卷积神经网络 AlexNet【动手学深度学习v2】_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1h54y1L7oe/?spm_id_from=333.337.search-card.all.click&vd_source=0dc0c2075537732f2b9a894b24578eedCV-baselinel-AlexNet-06-训练技巧_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV167411371Y/?spm_id_from=333.788.player.switch&vd_source=0dc0c2075537732f2b9a894b24578eed&p=6
相关文章:

【深度学习】四大图像分类网络之AlexNet
AlexNet是由Alex Krizhevsky、Ilya Sutskever(均为Hinton的学生)和Geoffrey Hinton(被誉为”人工智能教父“,首先将反向传播用于多层神经网络)在2012年ImageNet图像分类竞赛中提出的一种经典的卷积神经网络。AlexNet在…...

Day1——GitHub项目共同开发
MarkDowm解释 Markdown是一种轻量级标记语言,它允许人们使用易读易写的纯文本格式编写文档,然后转换成结构化的HTML代码。Markdown的目的是让文档的编写和阅读变得更加容易,同时也不失HTML的强大功能。以下是Markdown的一些基本概念和用法&a…...

基于PHP的香水销售系统的设计与实现
摘 要 时代科技高速发展的背后,也带动了经济的增加,人们对生活质量的要求也不断提高。香水作为一款在人际交往过程中,给对方留下良好地第一印象的产品,在生活中也可以独自享受其为生活带来的点缀。目前香水市场体量庞大ÿ…...

A-star算法
算法简介 A*(A-star)算法是一种用于图形搜索和路径规划的启发式搜索算法,它结合了最佳优先搜索(Best-First Search)和Dijkstra算法的思想,能够有效地寻找从起点到目标点的最短路径。A*算法广泛应用于导航、…...

前端用原生js下载File对象文件,多用于上传附件时,提交之前进行点击预览,或打开本地已经选择待上传的附件列表
用于如上图场景,已经点击选择了将要上传的文件,在附件列表里面用户希望点击下载文件,以核实自己是否选中了需要上传的文件,此刻就需要 用到下面的方法: // 下载File对象文件 downloadByFileObject(file, { fileName }…...
服务器记录所有用户docker操作,监控删除容器/镜像的人
文章目录 使用场景安装auditd添加docker审计规则设置监控日志大小与定期清除查询 Docker 操作日志查看所有用户,所有操作日志查看特定用户的 Docker 操作查看所有用户删除容器/镜像日志过滤特定时间范围内日志 使用场景 多人使用的服务器,使用的docker …...

关于使用天地图、leaflet、ENVI、Vue工具实现 前端地图上覆盖上处理的农业地块图层任务
1.项目框架搭建 项目地址:Webgis: 一个关于webgis、天地图、Leaflet、Vue、数据库的学习框架。 ①git到本地,vscode打开。 ② 配置后端 搜索下载MySQL插件(前提:电脑中装有MySQL才可应用)。 连接数据库。 配置基本…...

基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
目录 1.算法仿真效果 2.算法涉及理论知识概要 3.MATLAB核心程序 4.完整算法代码文件获得 1.算法仿真效果 matlab2022a仿真结果如下(完整代码运行后无水印): 仿真操作步骤可参考程序配套的操作视频。 2.算法涉及理论知识概要 在现代社会…...

用 React 编写一个笔记应用程序
这篇文章会教大家用 React 编写一个笔记应用程序。用户可以创建、编辑、和切换 Markdown 笔记。 1. nanoid nanoid 是一个轻量级和安全的唯一字符串ID生成器,常用于JavaScript环境中生成随机、唯一的字符串ID,如数据库主键、会话ID、文件名等场景。 …...

如何离线安装dockerio
如何离线安装dockerio 一、下载Docker离线安装包二、上传离线安装包三、解压安装包四、复制文件到系统目录五、配置Docker服务六、设置文件权限并重新加载配置七、启动Docker服务八、设置开机自启动九、验证安装Docker是一个开源的容器化平台,用于开发、发布和运行应用程序。离…...

LocalDateTime序列化(跟redis有关)
使用过 没成功,序列化后是[2024 11 10 17 22 20]差不多是这样, 反序列化后就是: [ 2024 11 10.... ] 可能是我漏了什么 这是序列化后的: 反序列化后: 方法(加序列化和反序列化注解)&…...
【redis】如何跑
在 Windows 上配置 Redis 需要一些额外的步骤,因为 Redis 官方并没有为 Windows 提供原生支持。不过,可以通过以下方法来安装和配置 Redis。 方法一:使用 Windows 版 Redis(非官方版本) 下载 Redis for Windows Redis…...

Scala学习记录,全文单词统计
package test32 import java.io.PrintWriter import scala.io.Source //知识点 // 字符串.split("分隔符":把字符串用指定的分隔符,拆分成多个部分,保存在数组中) object test {def main(args: Array[String]): Unit {//从文件1.t…...

【MyBatis】验证多级缓存及 Cache Aside 模式的应用
文章目录 前言1. 多级缓存的概念1.1 CPU 多级缓存1.2 MyBatis 多级缓存 2. MyBatis 本地缓存3. MyBatis 全局缓存3.1 MyBatis 全局缓存过期算法3.2 CacheAside 模式 后记MyBatis 提供了缓存切口, 采用 Redis 会引入什么问题?万一遇到需强一致场景&#x…...

学习ASP.NET Core的身份认证(基于Session的身份认证3)
开源博客项目Blog中提供了另一种访问控制方式,其基于自定义类及函数的特性类控制访问权限。本文学习并测试开源博客项目Blog的访问控制方式,测试程序中直接复用开源博客项目Blog中的相关类及接口定义,并在其上调整判断逻辑。 首先是接口A…...
速盾:高防 CDN 可以配置客户端请求超时配置?
在高防 CDN(Content Delivery Network,内容分发网络)的运行管理中,客户端请求超时配置是一项重要的功能设定,它对于优化网络资源分配、保障服务质量以及维护系统稳定性有着关键意义。 一、客户端请求超时配置的概念 …...

DRM(数字权限管理技术)防截屏录屏----ffmpeg安装
提示:ffmpeg安装 文章目录 [TOC](文章目录) 前言一、下载二、配置环境变量三、运行ffmpeg四、文档总结 前言 FFmpeg是一套可以用来记录、转换数字音频、视频,并能将其转化为流的开源计算机程序。采用LGPL或GPL许可证。它提供了录制、转换以及流化音视频的…...

使用PyQt5开发一个GUI程序的实例演示
一、安装Python 下载安装到这个目录 G:\Python38-32 安装完成有这些工具,后面备用: G:\Python38-32\Scripts\pyrcc5.exe G:\Python38-32\Scripts\pyuic5.exe 二、PyQt环境配置 pip install PyQt5 pip install pyqt5-tools 建议使用国内源,…...
【VUE3】【Naive UI】<NCard> 标签
【Vue3】【Naive UI】 标签 title 属性bordered 属性header-style 和 body-style 属性footer 属性actions 属性hoverable 属性loading 属性size 属性type 属性cover 和 avatar 属性description 属性style 属性 【VUE3】【Naive UI】<NCard> 标签 【VUE3】…...
选择排序之大根堆
大根堆:树的根节点大于左右子树的结点值,这样就能保证每次从树根取的是最大值 灵魂在于HeadAdjust函数,以某节点为树根通过下落调整为大根堆, 建树思想 就是,从最后一个非终端结点开始调整以该结点为根的子树&#x…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...

Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...