分层图最短路
常见情形:
对于边有k次操作的题。。
整体思想:
分层图最短路可以视作是dijkstra的一个扩展,通常用于处理N小于10000,或者是k不大的情形。整体有点类似于拆点。将一个点拆成k个点处理。层与层之间互不影响。
好了我就说这么多,剩下来的交给想象力,这个自己相通了就不难理解。
经典例题:
一:3095. 冻结
“我要成为魔法少女!”
“那么,以灵魂为代价,你希望得到什么?”
“我要将有关魔法和奇迹的一切,封印于卡片之中......”
在这个愿望被实现以后的世界里,人们享受着魔法卡片(SpellCard,又名符卡)带来的便捷。
现在,不需要立下契约也可以使用魔法了!
你还不来试一试?
比如,我们在魔法百科全书(Encyclopedia of Spells)里用“freeze”作为关键字来查询,会有很多有趣的结果。
例如,我们熟知的 Cirno,她的冰冻魔法当然会有对应的 SpellCard 了。
当然,更加令人惊讶的是,居然有冻结时间的魔法,Cirno 的冻青蛙比起这些来真是小巫见大巫了。
这说明之前的世界中有很多魔法少女曾许下控制时间的愿望,比如 Akemi Homura、Sakuya Izayoi......
当然,在本题中我们并不是要来研究历史的,而是研究魔法的应用。
我们考虑最简单的旅行问题吧:
现在这个大陆上有 NN 个城市,MM 条双向的道路。
城市编号为 1∼N1∼N,我们在 11 号城市,需要到 NN 号城市,怎样才能最快地到达呢?
这不就是最短路问题吗?
我们都知道可以用 Dijkstra、Bellman-Ford、Floyd-Warshall 等算法来解决。
现在,我们一共有 KK 张可以使时间变慢 50%50% 的 SpellCard,也就是说,在通过某条路径时,我们可以选择使用一张卡片,这样,我们通过这一条道路的时间就可以减少到原先的一半。
需要注意的是:
- 在一条道路上最多只能使用一张 SpellCard。
- 使用一张 SpellCard 只在一条道路上起作用。
- 你不必使用完所有的 SpellCard。
给定以上的信息,你的任务是:
求出在可以使用这不超过 KK 张时间减速的 SpellCard 之情形下,从城市 11 到城市 NN 最少需要多长时间。
输入格式
第一行包含三个整数:N、M、KN、M、K。
接下来 MM 行,每行包含三个整数:Ai、Bi、TimeiAi、Bi、Timei,表示存在一条 AiAi 与 BiBi 之间的双向道路,在不使用 SpellCard 之前提下,通过它需要 TimeiTimei 的时间。
输出格式
输出一个整数,表示从 11 号城市到 NN 号城市的最小用时。
数据范围
1≤K≤N≤501≤K≤N≤50,
1≤M≤10001≤M≤1000,
1≤Ai,Bi≤N1≤Ai,Bi≤N,
2≤Timei≤20002≤Timei≤2000,
为保证答案为整数,保证所有的 TimeiTimei 均为偶数。
所有数据中的无向图保证无自环、重边,且是连通的。输入样例:
4 4 1 1 2 4 4 2 6 1 3 8 3 4 8
输出样例:
7
样例解释
在不使用 SpellCard 时,最短路为 1→2→41→2→4,总时间为 1010。
现在我们可以使用 11 次 SpellCard,那么我们将通过 2→42→4 这条道路的时间减半,此时总时间为 77。
#include<bits/stdc++.h> using namespace std; const int N=60,M=2010; typedef pair<int,pair<int,int>>PII; int h[N],e[M],ne[M],w[M],idx; int dis[N][N]; bool st[N][N]; int n,m,k; void add(int a,int b,int c){e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++; } void dij() {memset(dis,0x3f,sizeof dis);priority_queue<PII,vector<PII>,greater<PII>>q;q.push({0,{1,0}});dis[1][0]=0;while(q.size()){auto t=q.top();q.pop();int v=t.second.first;int u=t.second.second;if(st[v][u]){continue;}st[v][u]=true;for(int i=h[v];~i;i=ne[i]){int j=e[i];if(st[j][u]){continue;}if(u+1<=k){if(dis[j][u+1]>dis[v][u]+w[i]/2){dis[j][u+1]=dis[v][u]+w[i]/2;q.push({dis[j][u+1],{j,u+1}});}}if(dis[j][u]>dis[v][u]+w[i]){dis[j][u]=dis[v][u]+w[i];q.push({dis[j][u],{j,u}});}}} } void solve() {cin>>n>>m>>k;memset(h,-1,sizeof h);for(int i=1;i<=m;i++){int a,b,c;cin>>a>>b>>c;add(a,b,c);add(b,a,c);}dij();int ans=0x3f3f3f3f;for(int i=0;i<=k;i++){//cout<<dis[n][i]<<endl;ans=min(dis[n][i],ans);}cout<<ans; } int main() {ios::sync_with_stdio(0);cin.tie(0),cout.tie(0);solve();return 0; }
二:340. 通信线路
在郊区有 NN 座通信基站,PP 条 双向 电缆,第 ii 条电缆连接基站 AiAi 和 BiBi。
特别地,11 号基站是通信公司的总站,NN 号基站位于一座农场中。
现在,农场主希望对通信线路进行升级,其中升级第 ii 条电缆需要花费 LiLi。
电话公司正在举行优惠活动。
农产主可以指定一条从 11 号基站到 NN 号基站的路径,并指定路径上不超过 KK 条电缆,由电话公司免费提供升级服务。
农场主只需要支付在该路径上剩余的电缆中,升级价格最贵的那条电缆的花费即可。
求至少用多少钱可以完成升级。
输入格式
第 11 行:三个整数 N,P,KN,P,K。
第 2..P+12..P+1 行:第 i+1i+1 行包含三个整数 Ai,Bi,LiAi,Bi,Li。
输出格式
包含一个整数表示最少花费。
若 11 号基站与 NN 号基站之间不存在路径,则输出 −1−1。
数据范围
0≤K<N≤10000≤K<N≤1000,
1≤P≤100001≤P≤10000,
1≤Li≤10000001≤Li≤1000000输入样例:
5 7 1 1 2 5 3 1 4 2 4 8 3 2 3 5 2 9 3 4 7 4 5 6
输出样例:
4
#include<bits/stdc++.h> using namespace std; typedef pair<int, pair<int, int>>PII; const int N = 1010,M=20010; int h[N], e[M], ne[M], w[M], idx; int dis[N][N]; bool st[N][N]; int n, m, k; int ans=0x3f3f3f3f; void add(int a, int b, int c) {e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++; } void dij() {memset(dis, 0x3f, sizeof dis);priority_queue<PII, vector<PII>, greater<PII>>q;q.push({ 0,{1,0} });dis[1][0] = 0;while (q.size()) {auto t = q.top();q.pop();int v = t.second.first;int u = t.second.second;if (st[v][u]) {continue;}st[v][u] = true;for (int i = h[v];~i;i = ne[i]) {int j = e[i];if (st[j][u]) {continue;}if (u + 1 <= k) {if (dis[j][u + 1] > dis[v][u] ) {dis[j][u + 1] = dis[v][u] ;q.push({ dis[j][u + 1],{j,u + 1} });}}if (dis[j][u] > max(dis[v][u] , w[i])) {dis[j][u] =max( dis[v][u] , w[i]);q.push({ dis[j][u], { j,u } });}}} } void solve() {cin >> n >> m >> k;memset(h, -1, sizeof h);for (int i = 1;i <= m;i++) {int a, b, c;cin >> a >> b >> c;add(a, b, c);add(b, a, c);}dij();for (int i = 0;i <= k;i++) {//cout << dis[n][i] << endl;ans = min(ans, dis[n][i]);}if (ans == 0x3f3f3f3f) {cout << -1;}else {cout << ans;} } int main() {ios::sync_with_stdio(0);cin.tie(0), cout.tie(0);solve();return 0; }
相关文章:
分层图最短路
常见情形: 对于边有k次操作的题。。 整体思想: 分层图最短路可以视作是dijkstra的一个扩展,通常用于处理N小于10000,或者是k不大的情形。整体有点类似于拆点。将一个点拆成k个点处理。层与层之间互不影响。 好了我就说这么多&…...
vue3 基本使用
Vue 3 提供了多种方式来构建用户界面,包括选项式 API 和 Composition API。下面我将详细介绍 Vue 3 的基本使用和语法,主要集中在选项式 API 上,因为这对于初学者来说更容易上手。 1. 创建 Vue 项目 如果你还没有一个 Vue 项目,…...

【maven-4】IDEA 配置本地 Maven 及如何使用 Maven 创建 Java 工程
IntelliJ IDEA(以下简称 IDEA)是一款功能强大的集成开发环境,广泛应用于 Java 开发。下面将详细介绍如何在 IDEA 中配置本地 Maven,并创建一个 Maven Java 工程,快速上手并高效使用 Maven 进行 Java 开发。 1. Maven …...
种花问题算法
假设有一个很长的花坛,一部分地块种植了花,另一部分却没有。可是,花不能种植在相邻的地块上,它们会争夺水源,两者都会死去。 给你一个整数数组 flowerbed 表示花坛,由若干 0 和 1 组成,其中 0 …...
对于大规模的淘宝API接口数据,有什么高效的处理方法?
1.数据分批处理 原理:当处理大规模数据时,一次性将所有数据加载到内存中可能会导致内存溢出。将数据分成较小的批次进行处理可以有效避免这个问题。示例代码:假设通过淘宝 API 获取到了一个包含大量商品详情的 JSON 数据列表,每个…...
openharmony 使用uvc库获取摄像头数据使用nativewindow显示
界面代码: XComponent({ id: xcomponentId, type: texture, libraryname: entry }).width(800).height(500) Natvie代码: 1、头文件 //NativeWindow #include <ace/xcomponent/native_interface_xcomponent.h> #include <cstdint> #incl…...

SQL Server 实战 - 多种连接
目录 背景 一、多种连接 1. 复合连接条件 2. 跨数据库连接 3. 隐连接 4. 自连接 5. 多表外连接 6. UNION ALL 二、一个对比例子 背景 本专栏文章以 SAP 实施顾问在实施项目中需要掌握的 sql 语句为偏向进行选题: 用例:SAP B1 的数据库工具&am…...
【手术显微镜】市场高度集中,由于高端手术显微镜的制造技术主要掌握于欧美企业
摘要 HengCe (恒策咨询)是全球知名的大型咨询机构,长期专注于各行业细分市场的调研。行业层面,重点关注可能存在“卡脖子”的高科技细分领域。企业层面,重点关注在国际和国内市场在规模和技术等层面具有代表性的企业,…...

IDEA 2024 配置Maven
Step 1:确定下载Apache Maven版本 在IDEA 2024中,随便新建一个Maven项目; 在File下拉菜单栏中,找到Setings; 在Build,Execution,Deployment中找到Maven 确定下载的Apache Maven版本应略低于或等于IDEA绑…...

Admin.NET框架使用宝塔面板部署步骤
文章目录 Admin.NET框架使用宝塔面板部署步骤🎁框架介绍部署步骤1.Centos7 部署宝塔面板2.部署Admin.NET后端3.部署前端Web4.访问前端页面 Admin.NET框架使用宝塔面板部署步骤 🎁框架介绍 Admin.NET 是基于 .NET6 (Furion/SqlSugar) 实现的通用权限开发…...
Flutter中的Future和Stream
在 Flutter 中,Future 和 Stream 都是用于处理异步操作的类,它们都基于 Dart 的异步编程模型,但是它们的使用场景和工作方式有所不同。以下是它们的区别以及各自适用的场景。 目录 一、Future1、基本使用2、异常处理1. catchError2. onError…...

107.【C语言】数据结构之二叉树求总节点和第K层节点的个数
目录 1.求二叉树总的节点的个数 1.容易想到的方法 代码 缺陷 思考:能否在TreeSize函数内定义静态变量解决size的问题呢? 其他写法 运行结果 2.最好的方法:分而治之 代码 运行结果 2.求二叉树第K层节点的个数 错误代码 运行结果 修正 运行结果 其他写法 1.求二…...
spring boot支持那些开发工具?
Spring Boot 支持多种开发工具,以帮助开发者更高效地进行应用开发。以下是小编给大家分享几种常用的开发工具及其特点: IntelliJ IDEA: IntelliJ IDEA 是一款非常流行的 Java IDE,它提供了对 Spring Boot 的全面支持,…...
Go-MediatR:Go语言中的中介者模式
在Go语言中,确实存在一个与C#中的MediatR类似的组件包,名为Go-MediatR。 Go-MediatR是一个受.NET中MediatR库启发的Go语言实现,它专注于通过中介者模式简化命令查询责任分离(CQRS)模式的处理和在事件驱动架构中的应用…...

5.11【机器学习】
先是对图像进行划分 划分完后, 顺序读取文件夹,在文件夹里顺序读取图片, 卷积层又称为滤波器,通道是说滤波器的个数,黑白通道数为1,RGB通道个数为3 在输入层,对于输入层而言,滤波…...
在 CentOS 上安装 Docker:构建容器化环境全攻略
一、引言 在当今的软件开发与运维领域,Docker 无疑是一颗璀璨的明星。它以轻量级虚拟化的卓越特性,为应用程序的打包、分发和管理开辟了崭新的高效便捷之路。无论是开发环境的快速搭建,还是生产环境的稳定部署,Docker 都展现出了…...
Python练习(2)
重复元素判定续。利用集合的无重复性来编写一个程序如果有一个元素出现了不止一次则返回true但不要改变原来列表的值: 一: def has_duplicates(lst): # 使用集合来存储已经见过的元素 seen set() for item in lst: if item in seen: # 如果元素已经在…...

如何实现一套键盘鼠标控制两台计算机(罗技Options+ Flow功能快速实现演示)
需求背景 之前我写过一篇文章如何实现一套键盘鼠标控制两台计算机(Mouse Without Borders快速上手教程)_一套键鼠控制两台电脑-CSDN博客 当我们在局域网内有两台计算机,想使用一套键鼠操控时,可以安装Mouse Without Borders软件…...
现代应用程序中基于 Cell 架构的安全防护之道
在飞速发展的软件开发领域,基于 Cell 的架构日益流行起来。其概念源自船舶舱壁的设计准则,即单独的水密舱室能允许故障孤立存在。通过将这个概念应用于软件,我们创建了一个架构,将应用程序划分为离散的、可管理的组件,…...

【导航查询】.NET开源 ORM 框架 SqlSugar 系列
.NET开源 ORM 框架 SqlSugar 系列 【开篇】.NET开源 ORM 框架 SqlSugar 系列【入门必看】.NET开源 ORM 框架 SqlSugar 系列【实体配置】.NET开源 ORM 框架 SqlSugar 系列【Db First】.NET开源 ORM 框架 SqlSugar 系列【Code First】.NET开源 ORM 框架 SqlSugar 系列【数据事务…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
深度解析:etcd 在 Milvus 向量数据库中的关键作用
目录 🚀 深度解析:etcd 在 Milvus 向量数据库中的关键作用 💡 什么是 etcd? 🧠 Milvus 架构简介 📦 etcd 在 Milvus 中的核心作用 🔧 实际工作流程示意 ⚠️ 如果 etcd 出现问题会怎样&am…...
Easy Excel
Easy Excel 一、依赖引入二、基本使用1. 定义实体类(导入/导出共用)2. 写 Excel3. 读 Excel 三、常用注解说明(完整列表)四、进阶:自定义转换器(Converter) 其它自定义转换器没生效 Easy Excel在…...
python读取SQLite表个并生成pdf文件
代码用于创建含50列的SQLite数据库并插入500行随机浮点数据,随后读取数据,通过ReportLab生成横向PDF表格,包含格式化(两位小数)及表头、网格线等美观样式。 # 导入所需库 import sqlite3 # 用于操作…...
02-性能方案设计
需求分析与测试设计 根据具体的性能测试需求,确定测试类型,以及压测的模块(web/mysql/redis/系统整体)前期要与相关人员充分沟通,初步确定压测方案及具体的性能指标QA完成性能测试设计后,需产出测试方案文档发送邮件到项目组&…...

短视频时长预估算法调研
weighted LR o d d s T p 1 − p ( 1 − p ) o d d s T p ( T p o d d s ∗ p ) o d d s p o d d s T o d d s odds \frac{Tp}{1-p} \newline (1-p)odds Tp \newline (Tp odds * p) odds \newline p \frac{odds}{T odds} \newline odds1−pTp(1−p)oddsTp(Tpodds…...