当前位置: 首页 > news >正文

【语音识别】Zipformer

Zipformer 是kaldi 团队于2024研发的序列建模模型。相比较于 Conformer、Squeezeformer、E-Branchformer等主流 ASR 模型,Zipformer 具有效果更好、计算更快、更省内存等优点。并在 LibriSpeech、Aishell-1 和 WenetSpeech 等常用数据集上取得了当时最好的 ASR 结果。

目录

一.方法

1. Down sampled encoder structure

2. Zipformer block

3. BiasNorm

4. Swoosh 激活函数

5. ScaledAdam


论文地址:https://arxiv.org/pdf/2310.11230.pdf

项目地址:https://github.com/k2-fsa/icefall/tree/master/egs/librispeech/ASR/zipformer

一.方法

Zipformer的整体框架如下图所示。

不同于 Conformer 只处理固定帧率 25Hz ,Zipformer 采用了1个类似于 U-Net 的结构,在不同帧率上学习时域表征。

首先,Conv-Embed 将输入的 100Hz 的声学特征下采样为 50 Hz 的特征序列;然后,由 6 个连续的 encoder stack 分别在 50Hz、25Hz、12.5Hz、6.25Hz、12.5Hz 和 25Hz 的采样率下进行时域建模。除了第1个 stack 外,其他的 stack 都采用了降采样的结构。在 stack 与 stack 之间,特征序列的采样率保持在 50Hz。不同的 stack 的 embedding 维度不同,中间stack 的 embedding 维度更大。每个 stack 的输出通过截断或者补零的操作,来对齐下1个 stack 的维度。Zipformer 最终输出的维度,取决于 embedding 维度最大的stack。

1. Down sampled encoder structure

•Conv-Embed

使用3个2-D卷积层,其时间×频率步长分别为1×2、2×2和1×2,输出通道分别为8、32和128。随后,利用了一个类似于Nextformer的ConvNeXt层,该层由1个kernel大小为7×7的深度卷积、1个具有384个输出通道的点卷积、1个SwooshL激活函数和1个具有128个输出通道的点卷积组成。在ConvNeXt模块上应用了残差连接。最后,使用1个线性层,后面跟着1个BiasNorm,以调整特征维度,使其与第1个stack相匹配。

•Downsampled stacks

对于降采样的 encoder stack,成对出现的 Downsample 和 Upsample 模块负责将特征长度对称地缩放。当降采样率为 2 时,Downsample 学习2个标量权重用来将相邻的2帧加权求和;Upsample 将每1帧复制为2帧。最后,通过1个 Bypass 模块整合 stack 的输入和输出。

2. Zipformer block

Zipformer block的结构如下图左侧所示。

Zipformer block深度大约是 Conformer block 的2倍。具体地,block 输入先被送到 MHAW 模块计算注意力权重attention weights,attention weights作为NLA 模块和 SA 模块的输入。同时,block 输入也被送到 feed-forward 模块,后接 NLA 模块和2个连续的模块组(SA + convolution + feed-forward)。最后,由1个 BiasNorm 模块对block 输出进行 normalize操作。除了残差连接,每个 Zipformer block 使用2个 Bypass 模型,用于结合 block 输入和中间模块的输出,分别位于 block 的中间和尾部。

•Non-Linear Attention

上图右侧为Non-Linear Attention的结构。利用 MHAW 模块计算好的注意力权重,沿着时间轴汇聚不同帧的向量。 具体而言,使用3个 linear 将输入转换为 A、B、C,每个的维度为输入维度的 3/4 倍。模块的输出为 linear(A\odot attention(\tanh (B)\odot C)),⊙ 表示点乘,attention 表示利用1个注意力头的权重对不同帧汇聚, linear layer 负责恢复特征的维度。

•Bypass

Bypass 模块学习1个逐通道的权重 c,结合模块输入x 和模块输出y:(1-c)\odot x+c\odot y 。在训练早期通过约束   c的最小值让模块接近 “straight-through” 有助于稳定模型训练。

3. BiasNorm

提出 BiasNorm 模块来替换 LayerNorm:

其中, b是可学习的逐通道的 bias, RMS[x-b]是通道的均方根值,\gamma是1个可学习的标量。

4. Swoosh 激活函数

提出2个新的激活函数用于代替 Swish,分别称为 SwooshR 和 SwooshL。

在 SwooshR 函数中,偏移值 0.313261687 是为了让函数经过原点;在 SwooshL函数中,偏移量 0.035 是经过实验得到的。

如下图所示,SwooshL 近似于 SwooshR 向右偏移得到的。

把 SwooshL 用在 “normally-off” 的模块(feed-forward 和 ConvNeXt)中,把 SwooshR 用在convolution 和 Conv-Embed 中其余的部分。

5. ScaledAdam

提出1个 Adam 优化器的 parameter-scale-invariant 版本,称为 ScaledAdam,可以加快模型收敛。

f(\theta )  为我们想要优化的 loss 函数,它对参数 \theta是可导的。在每个步骤t ,Adam 计算参数梯度 g(t)=\bigtriangledown _{\theta }f(\theta _{t-1}),并更新梯度的一阶动量m(t)=\beta _{1}m _{t-1} +(1-\beta _{1})g_{t}  和二阶动量v(t)=\beta _{2}v _{t-1} +(1-\beta _{2})g_{t}^{2} ,此处, \beta _{1}\beta _{2}表示控制动量更新的系数。Adam 在步骤 t 的参数更新量\Delta _{t}为:

 \alpha _{t}通常由外部的 LR schedule 控制, \frac{\sqrt{1-\beta _{2}^{t}}}{1-\beta _{1}^{t}}为偏置纠正项。

•Scaling update

为了确保不同 scale 的参数的相对变化量  \frac{\Delta _{t}}{r_{t-1}}一致,在参数更新量中引入参数的 scale,来放缩更新量\Delta _{t}

•Learning parameter scale

r _{t-1}更新到r _{t}对参数\theta带来的变化为\Delta _{t,r}^{'}=(r_{t}-r_{t-1})\odot \theta _{t-1}^{'}

其中,\eta是学习率\alpha _{t}的缩放参数,值为0.1时有助于稳定训练。

•Eden schedule

Eden schedule的公式如下:

其,t为 step,e为 epoch,\alpha _{step}\alpha _{epoch}分别控制学习率在哪个 step 和 epoch 开始快速下降,
linear(\alpha _{start},t _{warmup},t)表示1个线性 warmup,起点为\alpha _{start} ,经过 t _{warmup}个 step 变为 1。
\alpha _{base}表示当没有 warmup 的情况下学习率的最大值。

•Efficient implementation

为了加快 ScaledAdam 计算,我们将参数根据 shape 分组,按照 batch 进行参数更新。

相关文章:

【语音识别】Zipformer

Zipformer 是kaldi 团队于2024研发的序列建模模型。相比较于 Conformer、Squeezeformer、E-Branchformer等主流 ASR 模型,Zipformer 具有效果更好、计算更快、更省内存等优点。并在 LibriSpeech、Aishell-1 和 WenetSpeech 等常用数据集上取得了当时最好的 ASR 结果…...

vue+uniapp+echarts的使用(H5环境下echarts)

1.安装 npm install echarts4.9.0 --save // 带版本号 2.main.js中全局引用 // import echarts from echarts // 如果是5.0以上版本用这个 import * as echarts from echarts Vue.prototype.$echartsecharts 3.使用 <template><view id"box" style"w…...

【Python网络爬虫笔记】7-网络爬虫的搜索工具re模块

目录 一、网络爬虫中的正则表达式和re模块&#xff08;一&#xff09;数据提取的精确性&#xff08;二&#xff09;处理复杂的文本结构&#xff08;三&#xff09;提高数据处理效率 二、正则表达式的内涵&#xff08;一&#xff09;、常用元字符&#xff08;二&#xff09;、量…...

为什么选择 React Native 作为跨端方案

为什么选择 React Native 作为跨端方案 我深刻地知道&#xff0c;没有完美的跨端技术&#xff0c;只有适合的场景。脱离适用场景去谈跨端技术没有什么意义。 适用场景 1. 业务更新迭代较快的团队与出海团队 React Native 特别适合那些业务更新频繁、需要快速响应市场的团队…...

服务器与普通电脑有什么区别?

服务器和普通电脑&#xff08;通常指的是个人计算机&#xff0c;即PC&#xff09;有众多相似之处&#xff0c;主要构成包含&#xff1a;CPU&#xff0c;内存&#xff0c;芯片&#xff0c;I/O总线设备&#xff0c;电源&#xff0c;机箱及操作系统软件等&#xff0c;鉴于使用要求…...

Oracle 12c Data Guard 环境中的 GAP 修复方法

概述 上文中提到Oracle 12c 引入了多项新技术来简化 Data Guard 环境中的 GAP 修复过程&#xff0c;如&#xff08;RECOVER … FROM SERVICE&#xff09;。这些新特性不仅减少了操作步骤&#xff0c;还提高了效率和准确性。本文档将详细说明如何利用这些新特性进行 GAP 修复。…...

力扣 三角dp

动态规划基础题&#xff0c;当前所在元素来自上一行的两列的值。 题目 从图可以看出&#xff0c;每一行的第一个数与最后一个数都是1&#xff0c;然后中间的数是来自它左上方和右上方的数的和。当然并不是要打印这个三角形的形状&#xff0c;因此可以想到正常的打印方式应该是…...

SQL基础语法全解析(上篇)

一、基本概念 1. 数据库术语 数据库&#xff08;database&#xff09; - 保存有组织的数据的容器&#xff08;通常是一个文件或一组文件&#xff09;。数据表&#xff08;table&#xff09; - 某种特定类型数据的结构化清单。模式&#xff08;schema&#xff09; - 关于数据库…...

【笔记】Linux服务器端使用百度网盘

1、在python环境下&#xff0c;下载bypy pip install bypy 2、第一次连接需要认证 bypy info 认证通过后百度网盘会出现bypy文件夹&#xff0c;如下 3、查看当前文件夹下的文件 bypy list 若有很多文件夹&#xff0c;可在后面增加文件夹名称&#xff0c;列出对应位置下的文件&a…...

UEFI Spec 学习笔记---3 - Boot Manager(3)

3.2 Boot Manager Policy Protocol EFI_BOOT_MANAGER_POLICY_PROTOCOL----EFI应用程序使用该协议请求UEFI引导管理器使用平台策略连接设备。 typedef struct _EFI_BOOT_MANAGER_POLICY_PROTOCOL EFI_BOOT_MANAGER_POLICY_PROTOCOL; struct _EFI_BOOT_MANAGER_POLICY_PROTOCOL…...

ATTCK红队评估实战靶场(四)

靶机链接&#xff1a;http://vulnstack.qiyuanxuetang.net/vuln/detail/6/ 环境搭建 新建两张仅主机网卡&#xff0c;一张192.168.183.0网段&#xff08;内网网卡&#xff09;&#xff0c;一张192.168.157.0网段&#xff08;模拟外网网段&#xff09;&#xff0c;然后按照拓补…...

Android Studio 历史版本下载

Android Studio 历史版本下载 官方链接&#xff1a;https://developer.android.google.cn/studio/archive 通过gradle插件版本反查Android Studio历史版本 Android Studio Ladybug | 2024.2.1 October 1, 2024 【https://redirector.gvt1.com/edgedl/android/studio/ide-zip…...

微信小程序px和rpx单位互转方法

js代码如下 Page({data: {width: 0,width2: 0},onLoad: function (options) {let px this.pxToRpx(380)let rpx this.rpxToPx(730.7692307692307) // 检查两个互转是否是相同即可,例如pxToRpx(380)转成730.7692307692307 则rpxToPx(730.7692307692307)如果是380则代表互转没…...

Vercel 部署与管理指南:简化前端应用的自动化部署流程

引言 在现代的前端开发中&#xff0c;部署和托管项目一直是开发者关注的重要环节。Vercel&#xff0c;作为一个专注于简化前端开发和部署的平台&#xff0c;凭借其强大的自动化功能、全球内容分发网络&#xff08;CDN&#xff09;以及对 Next.js 等框架的优越支持&#xff0c;…...

Java11使用JVM同一日志框架启用日志记录

你可以使用-Xlog选项配置或启用Java虚拟机同一日志框架的日志记录。 -Xlog:gc*trace:file/Users/xx/gc-%t.log:time,tags,level,pid,tid,hostname,path:filecount3,filesize10K -Xlog:gc*trace:stdout:time,tags,level,pid,tid,hostname:filecount3,filesize10K -Xlog:gc*trac…...

onlyoffice实现文档比对(Beta版)-纯文字比对(非OCR)

一、说明 文档比对光靠前端或者后端是无法实现的。 该文中的实现方案为&#xff1a;onlyofficejava。java进行文档差异化比较并输出对比结果&#xff0c;only进行得到结果处理渲染。 此方案目前为Beta版本&#xff0c;简单Word Demo实现了比对结果。css、关联动态效果登将在后期…...

JS querySelector方法的优点

1. 灵活性 支持所有 CSS 选择器 ID 选择器&#xff1a;#id 示例&#xff1a;document.querySelector(#myId)解释&#xff1a;选择 id 为 myId 的元素。类选择器&#xff1a;.class 示例&#xff1a;document.querySelector(.myClass)解释&#xff1a;选择具有 class 为 myCla…...

利用获取商品详情API:item_get可以获取到淘宝商品详情的哪些数据?

先来看下测试的返回数据吧 items: { total_results: 76, totalpage: 8, page_size: 10, page: "1", item: [ { rate_content: "和我家的鞋柜特别搭&#xff0c;加上这一条遮挡布&#xff0c;感觉整洁多了&#xff0c;布料不是硬邦邦的那种&#xff0c;很满意。…...

【大数据学习 | 面经】Spark 3.x 中的AQE(自适应查询执行)

Spark 3.x 中的自适应查询执行&#xff08;Adaptive Query Execution&#xff0c;简称 AQE&#xff09;通过多种方式提升性能&#xff0c;主要包括以下几个方面&#xff1a; 动态合并 Shuffle 分区&#xff08;Coalescing Post Shuffle Partitions&#xff09;&#xff1a; 当 …...

[Vue]Vue-router

路由 对前端路由的理解 在前端技术早期&#xff0c;一个 url 对应一个页面&#xff0c;如果要从 A 页面切换到 B 页面&#xff0c;那么必然伴随着页面的刷新。这个体验并不好&#xff0c;不过在最初也是无奈之举——用户只有在刷新页面的情况下&#xff0c;才可以重新去请求数…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

redis和redission的区别

Redis 和 Redisson 是两个密切相关但又本质不同的技术&#xff0c;它们扮演着完全不同的角色&#xff1a; Redis: 内存数据库/数据结构存储 本质&#xff1a; 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能&#xff1a; 提供丰…...