使用 LLaMA-Factory 微调
git clone https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory pip install -e . pip install tf-keras
[dataset_info.json](dataset_info.json) 包含了所有可用的数据集。如果您希望使用自定义数据集,请**务必**在 `dataset_info.json` 文件中添加*数据集描述*,并通过修改 `dataset: 数据集名称` 配置来使用数据集。
目前我们支持 **alpaca** 格式和 **sharegpt** 格式的数据集。
```json
"数据集名称": {
"hf_hub_url": "Hugging Face 的数据集仓库地址(若指定,则忽略 script_url 和 file_name)",
"ms_hub_url": "ModelScope 的数据集仓库地址(若指定,则忽略 script_url 和 file_name)",
"script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略 file_name)",
"file_name": "该目录下数据集文件夹或文件的名称(若上述参数未指定,则此项必需)",
"formatting": "数据集格式(可选,默认:alpaca,可以为 alpaca 或 sharegpt)",
"ranking": "是否为偏好数据集(可选,默认:False)",
"subset": "数据集子集的名称(可选,默认:None)",
"split": "所使用的数据集切分(可选,默认:train)",
"folder": "Hugging Face 仓库的文件夹名称(可选,默认:None)",
"num_samples": "该数据集所使用的样本数量。(可选,默认:None)",
"columns(可选)": {
"prompt": "数据集代表提示词的表头名称(默认:instruction)",
"query": "数据集代表请求的表头名称(默认:input)",
"response": "数据集代表回答的表头名称(默认:output)",
"history": "数据集代表历史对话的表头名称(默认:None)",
"messages": "数据集代表消息列表的表头名称(默认:conversations)",
"system": "数据集代表系统提示的表头名称(默认:None)",
"tools": "数据集代表工具描述的表头名称(默认:None)",
"images": "数据集代表图像输入的表头名称(默认:None)",
"videos": "数据集代表视频输入的表头名称(默认:None)",
"chosen": "数据集代表更优回答的表头名称(默认:None)",
"rejected": "数据集代表更差回答的表头名称(默认:None)",
"kto_tag": "数据集代表 KTO 标签的表头名称(默认:None)"
},
"tags(可选,用于 sharegpt 格式)": {
"role_tag": "消息中代表发送者身份的键名(默认:from)",
"content_tag": "消息中代表文本内容的键名(默认:value)",
"user_tag": "消息中代表用户的 role_tag(默认:human)",
"assistant_tag": "消息中代表助手的 role_tag(默认:gpt)",
"observation_tag": "消息中代表工具返回结果的 role_tag(默认:observation)",
"function_tag": "消息中代表工具调用的 role_tag(默认:function_call)",
"system_tag": "消息中代表系统提示的 role_tag(默认:system,会覆盖 system column)"
}
}
```
## Alpaca 格式
### 指令监督微调数据集 SFT
- [样例数据集](alpaca_zh_demo.json)
在指令监督微调时,`instruction` 列对应的内容会与 `input` 列对应的内容拼接后作为人类指令,即人类指令为 `instruction\ninput`。而 `output` 列对应的内容为模型回答。
如果指定,`system` 列对应的内容将被作为系统提示词。
`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮对话的指令和回答。注意在指令监督微调时,历史消息中的回答内容**也会被用于模型学习**。
```json
[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"output": "模型回答(必填)",
"system": "系统提示词(选填)",
"history": [
["第一轮指令(选填)", "第一轮回答(选填)"],
["第二轮指令(选填)", "第二轮回答(选填)"]
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"system": "system",
"history": "history"
}
}
```
### 预训练数据集 CPT
- [样例数据集](c4_demo.json)
在预训练时,只有 `text` 列中的内容会用于模型学习。
```json
[
{"text": "document"},
{"text": "document"}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "text"
}
}
```
### 偏好数据集 DPO
偏好数据集用于奖励模型训练、DPO 训练、ORPO 训练和 SimPO 训练。
它需要在 `chosen` 列中提供更优的回答,并在 `rejected` 列中提供更差的回答。
```json
[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"chosen": "优质回答(必填)",
"rejected": "劣质回答(必填)"
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"ranking": true,
"columns": {
"prompt": "instruction",
"query": "input",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### KTO 数据集
KTO 数据集需要提供额外的 `kto_tag` 列。详情请参阅 [sharegpt](#sharegpt-格式)。
### 多模态图像数据集
多模态图像数据集需要提供额外的 `images` 列。详情请参阅 [sharegpt](#sharegpt-格式)。
### 多模态视频数据集
多模态视频数据集需要提供额外的 `videos` 列。详情请参阅 [sharegpt](#sharegpt-格式)。
## Sharegpt 格式
### 指令监督微调数据集 SFT
- [样例数据集](glaive_toolcall_zh_demo.json)
相比 alpaca 格式的数据集,sharegpt 格式支持**更多的角色种类**,例如 human、gpt、observation、function 等等。它们构成一个对象列表呈现在 `conversations` 列中。
注意其中 human 和 observation 必须出现在奇数位置,gpt 和 function 必须出现在偶数位置。
```json
[
{
"conversations": [
{
"from": "human",
"value": "人类指令"
},
{
"from": "function_call",
"value": "工具参数"
},
{
"from": "observation",
"value": "工具结果"
},
{
"from": "gpt",
"value": "模型回答"
}
],
"system": "系统提示词(选填)",
"tools": "工具描述(选填)"
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"system": "system",
"tools": "tools"
}
}
```
### 预训练数据集 CPT
尚不支持,请使用 [alpaca](#alpaca-格式) 格式。
### 偏好数据集
- [样例数据集](dpo_zh_demo.json)
Sharegpt 格式的偏好数据集同样需要在 `chosen` 列中提供更优的消息,并在 `rejected` 列中提供更差的消息。
```json
[
{
"conversations": [
{
"from": "human",
"value": "人类指令"
},
{
"from": "gpt",
"value": "模型回答"
},
{
"from": "human",
"value": "人类指令"
}
],
"chosen": {
"from": "gpt",
"value": "优质回答"
},
"rejected": {
"from": "gpt",
"value": "劣质回答"
}
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"ranking": true,
"columns": {
"messages": "conversations",
"chosen": "chosen",
"rejected": "rejected"
}
}
```
### KTO 数据集
- [样例数据集](kto_en_demo.json)
KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人类反馈。
```json
[
{
"conversations": [
{
"from": "human",
"value": "人类指令"
},
{
"from": "gpt",
"value": "模型回答"
}
],
"kto_tag": "人类反馈 [true/false](必填)"
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"kto_tag": "kto_tag"
}
}
```
### 多模态图像数据集
- [样例数据集](mllm_demo.json)
多模态图像数据集需要额外添加一个 `images` 列,包含输入图像的路径。
注意图片的数量必须与文本中所有 `<image>` 标记的数量严格一致。
```json
[
{
"conversations": [
{
"from": "human",
"value": "<image>人类指令"
},
{
"from": "gpt",
"value": "模型回答"
}
],
"images": [
"图像路径(必填)"
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"images": "images"
}
}
```
### 多模态视频数据集
- [样例数据集](mllm_video_demo.json)
多模态视频数据集需要额外添加一个 `videos` 列,包含输入视频的路径。
注意视频的数量必须与文本中所有 `<video>` 标记的数量严格一致。
```json
[
{
"conversations": [
{
"from": "human",
"value": "<video>人类指令"
},
{
"from": "gpt",
"value": "模型回答"
}
],
"videos": [
"视频路径(必填)"
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"videos": "videos"
}
}
```
### OpenAI 格式
OpenAI 格式仅仅是 sharegpt 格式的一种特殊情况,其中第一条消息可能是系统提示词。
```json
[
{
"messages": [
{
"role": "system",
"content": "系统提示词(选填)"
},
{
"role": "user",
"content": "人类指令"
},
{
"role": "assistant",
"content": "模型回答"
}
]
}
]
```
对于上述格式的数据,`dataset_info.json` 中的*数据集描述*应为:
```json
"数据集名称": {
"file_name": "data.json",
"formatting": "sharegpt",
"columns": {
"messages": "messages"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant",
"system_tag": "system"
}
}
```
笔者这里建议先CPT >>>>SFT(通用领域+专业领域)>>>>DPO
相关文章:
使用 LLaMA-Factory 微调
git clone https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory pip install -e . pip install tf-keras[dataset_info.json](dataset_info.json) 包含了所有可用的数据集。如果您希望使用自定义数据集,请**务必**在 dataset_info.json 文件中添加*数据…...

vue2 虚拟DOM 和 真实DOM (概念、作用、Diff 算法)
虚拟 DOM 和 真实DOM(概念、作用、Diff 算法) 1.1 概念 真实 DOM(Document Object Model):是浏览器中用于表示文档结构的树形结构。 <h2>你好</h2>虚拟DOM:用 JavaScript 对象来模拟真实 DOM…...

GEOBench-VLM:专为地理空间任务设计的视觉-语言模型基准测试数据集
2024-11-29 ,由穆罕默德本扎耶德人工智能大学等机构创建了GEOBench-VLM数据集,目的评估视觉-语言模型(VLM)在地理空间任务中的表现。该数据集的推出填补了现有基准测试在地理空间应用中的空白,提供了超过10,000个经过人工验证的指…...

说说Elasticsearch查询语句如何提升权重?
大家好,我是锋哥。今天分享关于【说说Elasticsearch查询语句如何提升权重?】面试题。希望对大家有帮助; 说说Elasticsearch查询语句如何提升权重? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在 Elasticsearch 中&…...

2-2-18-9 QNX系统架构之文件系统(一)
阅读前言 本文以QNX系统官方的文档英文原版资料为参考,翻译和逐句校对后,对QNX操作系统的相关概念进行了深度整理,旨在帮助想要了解QNX的读者及开发者可以快速阅读,而不必查看晦涩难懂的英文原文,这些文章将会作为一个…...

Unity类银河战士恶魔城学习总结(P156 Audio Settings音频设置)
【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili 教程源地址:https://www.udemy.com/course/2d-rpg-alexdev/ 本章节实现了音频的大小设置与保存加载 音频管理器 UI_VolumeSlider.cs 定义了 UI_VolumeSlider 类,用于处理与音频设置相关的…...

springboot vue 会员收银系统 (12)购物车关联服务人员 订单计算提成 开源
前言 完整版演示 http://120.26.95.195/ 开发版演示 http://120.26.95.195:8889/ 在之前的开发进程中,我们完成订单的挂单和取单功能,今天我们完成购物车关联服务人员,用户计算门店服务人员的提成。 1.商品关联服务人员 服务人员可以选择 一…...

P3916 图的遍历(Tarjan缩点和反向建边)
P3916 图的遍历 - 洛谷 | 计算机科学教育新生态 写法一:Tarjan 思路:先运用Tarjan算法得到每个连通块中最大的编号,然后对每个连通块进行缩点重新建图,进行dfs,得到缩点后的连通块能够达到的最大编号。 Code: conste…...

Android13 允许桌面自动旋转
一)需求-场景 Android13 实现允许桌面自动旋转 Android13 版本开始后,支持屏幕自动旋转,优化体验和兼容性,适配不同屏幕 主界面可自动旋转 二)参考资料 android framework13-launcher3【06手机旋转问题】 Launcher默…...

cocotb value cocotb—基础语法对照篇
cocotb—基础语法对照篇 import cocotb from cocotb.triggers import Timer from adder_model import adder_model from cocotb.clock import Clock from cocotb.triggers import RisingEdge import randomcocotb.test() async def adder_basic_test(dut):"""Te…...
001-SpringBoot整合日志
SpringBoot整合日志 一、引入依赖二、配置 application.yml三、配置文件 logback.xml四、配置文件 WebConfigurerAdapter五、配置常量文件六、配置拦截器七、效果展示一、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId&…...
【Java基础面试题011】什么是Java中的自动装箱和拆箱?
相关知识补充:《Java从入门到精通(JDK17版)》_尚硅谷电子书.pdf Autism_Btkrsr/Blog_md_to_pdf - 码云 - 开源中国 (gitee.com) 回答重点 自动装箱:Java编译器自动将基本数据类型转换为包装类型 自动拆箱:Java编译器自动将包装类转换为基…...

ERROR in [eslint] Invalid Options ‘extensions‘ has been removed.
看着这个报错 感觉是版本不对引起的 ERROR in [eslint] Invalid Options: - Unknown options: extensions - extensions has been removed. ERROR in Error: Child compilation failed: [eslint] Invalid Options: - Unknown options: extensions - extensions has b…...
消息传递神经网络(Message Passing Neural Networks, MPNN)
消息传递神经网络(Message Passing Neural Networks, MPNN) 一、引言二、消息传递框架概述1.消息传递阶段(1)消息生成与传播-message(2)消息聚合-aggregate(3)消息更新-update&#…...
常用图像变换方法
伽马变换: void gamma_transform(cv::Mat &img, double gamma) {cv::Mat normalized;img.convertTo(normalized, CV_64F...

从被动响应到主动帮助,ProActive Agent开启人机交互新篇章
在人工智能领域,我们正见证着一场革命性的变革。传统的AI助手,如ChatGPT,需要明确的指令才能执行任务。但现在,清华大学联合面壁智能等团队提出了一种全新的主动式Agent交互范式——ProActive Agent,它能够主动观察环境…...

力扣hot100道【贪心算法后续解题方法心得】(三)
力扣hot100道【贪心算法后续解题方法心得】 十四、贪心算法关键解题思路1、买卖股票的最佳时机2、跳跃游戏3、跳跃游戏 | |4、划分字母区间 十五、动态规划什么是动态规划?关键解题思路和步骤1、打家劫舍2、01背包问题3、完全平方式4、零钱兑换5、单词拆分6、最长递…...

工业齐套管理虚拟现实仿真模拟软件
工业齐套管理虚拟现实仿真模拟软件是与法国最大的汽车制造商合作开发的一款虚拟现实仿真模拟软件,借助身临其境的虚拟现实环境,无需停止生产线,即可模拟仓库和提货区域。 工业齐套管理虚拟现实仿真模拟软件不仅适用于汽车工业,安全…...

ARP表、MAC表、路由表的区别和各自作用
文章目录 ARP表、MAC表、路由表的区别和各自作用同一网络内:ARP表request - 请求reply - 响应 MAC地址在同一网络内,交换机如何工作? 不同网络路由表不同网络通信流程PC1到路由器路由器到PC2流程图 简短总结 ARP表、MAC表、路由表的区别和各自作用 拓扑图如下: 同一网络内:…...

Android 使用OpenGLES + MediaPlayer 获取视频截图
概述 Android 获取视频缩略图的方法通常有: ContentResolver: 使用系统数据库MediaMetadataRetriever: 这个是android提供的类,用来获取本地和网络media相关文件的信息ThumbnailUtils: 是在android2.2(api8)之后新增的一个,该类为…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...