当前位置: 首页 > news >正文

常见排序算法总结 (三) - 归并排序与归并分治

归并排序

算法思想

将数组元素不断地拆分,直到每一组中只包含一个元素,单个元素天然有序。之后用归并的方式收集跨组的元素,最终形成整个区间上有序的序列。

稳定性分析

归并排序是稳定的,拆分数组时会自然地将元素分成有先后顺序的子数组,在归并的过程中如果遇到相等的值,优先收集早出现的子数组中的那个即可。

具体实现

递归

// 注意预先定义辅助数组,防止递归层数深的情况下花大量时间空间去开数组
public static int MAX_N = 50010;
public static int[] temp = new int[MAX_N];// 归并,用于将已经有序的两个数组合并成更大的有序数组
private void merge(int[] arr, int left, int mid,  int right) {int index1 = left, index2 = mid + 1, index = left;// 两个数组都有剩余元素,每次收集值较小的元素while(index1 <= mid && index2 <= right) {temp[index++] = arr[index1] <= arr[index2] ? arr[index1++] : arr[index2++];}// 其中一个数组为空,将另一个数组剩余的所有元素都添加到结果数组的末尾while(index1 <= mid) {temp[index++] = arr[index1++];}while(index2 <= right) {temp[index++] = arr[index2++];}// 结果回写到原数组System.arraycopy(temp, left, arr, left, right - left + 1);
}// 归并排序
private void mergeSort(int[] arr, int left, int right) {// 左右端点相同,数组中只有单个元素认为天然有序if (left == right) {return;}int mid = left + ((right - left) >>> 1); // 计算区间中点作为划分数组的依据// 递归地对左半边数组进行排序mergeSort(arr, left, mid);// 递归地对右半边数组进行排序mergeSort(arr, mid + 1, right);// 归并收集结果merge(arr, left, mid, right);
}

非递归

// 注意预先定义辅助数组,防止递归层数深的情况下花大量时间空间去开数组
public static int MAX_N = 50010;
public static int[] temp = new int[MAX_N];// 归并方法,用于将已经有序的两个数组合并成更大的有序数组
private void merge(int[] arr, int left, int mid,  int right) {int index1 = left, index2 = mid + 1, index = left;// 两个数组都有剩余元素,每次收集值较小的元素while(index1 <= mid && index2 <= right) {temp[index++] = arr[index1] <= arr[index2] ? arr[index1++] : arr[index2++];}// 其中一个数组为空,将另一个数组剩余的所有元素都添加到结果数组的末尾while(index1 <= mid) {temp[index++] = arr[index1++];}while(index2 <= right) {temp[index++] = arr[index2++];}// 结果回写到原数组System.arraycopy(temp, left, arr, left, right - left + 1);
}// 归并排序
private void mergeSort(int[] arr) {int n = arr.length;// 根据步长来迭代,每一轮扩大一倍for (int left, mid, right, step = 1; step < n; step <<= 1) {left = 0; // 左端点从 0 开始while (left < n) {mid = left + step - 1; // 计算区间中点的位置// 另一半区间无法构成,直接进行下一轮if (mid >= n - 1) {break;}// 数组内剩余元素不一定够填满右半边数组,右端点要根据情况来取值right = Math.min(left + (step << 1) - 1, n - 1);merge(arr, left, mid, right);// 移动指针,准备归并右半边数组left = right + 1;}}
}

归并分治

分治是一种算法思想,归并分治顾名思义就是涉及到了归并的分治策略。这部分内容其实和排序关系不大,但是作为归并应用的扩展放在一起整理比较合适的。

算法思想

如果一个问题满足两个条件,那么大概率可以使用归并分治解决:

  • 全局的结果相当于划分成两部分之后,左半边、右半边与跨左右三部分的结果的并集,也就是这个问题可以总中间拆分成子问题。
  • 如果拆分之后小范围上有序,能够使得计算跨左右的答案时更方便。

实践案例:Leetcode 493. 翻转对

递归

class Solution {// 注意预先定义辅助数组,防止递归层数深的情况下花大量时间空间去开数组public static int MAX_N = 50010;public static int[] temp = new int[MAX_N];public int reversePairs(int[] nums) {return reversePairs(nums, 0, nums.length - 1);}// 重载一个同名方法,将它改造成方便递归的形式private int reversePairs(int[] nums, int left, int right) {// 只有一个元素的情况下没有答案if(left == right) {return 0;}int mid = left + ((right - left) >>> 1);// 结果等于左半边、右半边与跨左右的结果的并集return reversePairs(nums, left, mid) + reversePairs(nums, mid + 1, right) + merge(nums, left, mid, right);}private int merge(int[] nums, int left, int mid,  int right) {int res = 0;// 当前跨小范围的情况下,更小范围内已经有序for(int i = left, j = mid + 1; i <= mid; i++) {// 确定了当前轮 j 的位置之后,这个指针不会回退,这也是提升性能的根本原因while(j <= right && (long) nums[i] > (long) 2 * nums[j]) {j++;}res += j - mid - 1;}// 常规归并流程int index1 = left, index2 = mid + 1, index = left;while(index1 <= mid && index2 <= right) {temp[index++] = nums[index1] <= nums[index2] ? nums[index1++] : nums[index2++];}while(index1 <= mid) {temp[index++] = nums[index1++];}while(index2 <= right) {temp[index++] = nums[index2++];}System.arraycopy(temp, left, nums, left, right - left + 1);return res;}
}

非递归

class Solution {// 注意预先定义辅助数组,防止递归层数深的情况下花大量时间空间去开数组public static int MAX_N = 50010;public static int[] temp = new int[MAX_N];public int reversePairs(int[] nums) {int res = 0;int n = nums.length;for (int left, mid, right, step = 1; step < n; step <<= 1) {left = 0;while (left < n) {mid = left + step - 1;if (mid >= n - 1) {break;}right = Math.min(left + (step << 1) - 1, n - 1);res += merge(nums, left, mid, right); // 累计每次归并的结果left = right + 1;}}return res;}private int merge(int[] nums, int left, int mid,  int right) {int res = 0;// 当前跨小范围的情况下,更小范围内已经有序for(int i = left, j = mid + 1; i <= mid; i++) {// 确定了当前轮 j 的位置之后,这个指针不会回退,这也是提升性能的根本原因while(j <= right && (long) nums[i] > (long) 2 * nums[j]) {j++;}res += j - mid - 1;}// 常规归并流程int index1 = left, index2 = mid + 1, index = left;while(index1 <= mid && index2 <= right) {temp[index++] = nums[index1] <= nums[index2] ? nums[index1++] : nums[index2++];}while(index1 <= mid) {temp[index++] = nums[index1++];}while(index2 <= right) {temp[index++] = nums[index2++];}System.arraycopy(temp, left, nums, left, right - left + 1);return res;}
}

梳理总结

分治是一种通过不断划分来减小问题规模,而归并是用来收集得到全局结果的方法。上面的例子所使用的都是一分为二的做法,其实每一轮可以划分成更多子问题,演变成多路归并。
正是上面这种不停划分的过程,使得无论是归并排序还是归并分治,都能有效地将暴力搜索需要 O ( N 2 ) O(N ^ 2) O(N2) 量级的方法,优化到 O ( N l o g N ) O(NlogN) O(NlogN) 这个级别。
当然,本质上来说还是空间换时间,这样的操作很明显需要 O ( N ) O(N) O(N) 量级的额外空间。

从使用上来说,归并排序一般不会成为手写排序的选择。但是归并分治则是很多问题的优秀解决方案,需要注意它的使用前提和具体实现。

后记

使用 Leetcode 912. 排序数组 进行测试,归并排序能够比较高高效地完成任务,略逊于计数排序和基数排序(不过其实题目要求使用尽可能少的额外空间,归并排序肯定不属于首选的方案)。

相关文章:

常见排序算法总结 (三) - 归并排序与归并分治

归并排序 算法思想 将数组元素不断地拆分&#xff0c;直到每一组中只包含一个元素&#xff0c;单个元素天然有序。之后用归并的方式收集跨组的元素&#xff0c;最终形成整个区间上有序的序列。 稳定性分析 归并排序是稳定的&#xff0c;拆分数组时会自然地将元素分成有先后…...

【后端开发】Go语言编程实践,Goroutines和Channels,基于共享变量的并发,反射与底层编程

【后端开发】Go语言编程实践&#xff0c;Goroutines和Channels&#xff0c;基于共享变量的并发&#xff0c;反射与底层编程 【后端开发】Go语言高级编程&#xff0c;CGO、Go汇编语言、RPC实现、Web框架实现、分布式系统 文章目录 1、并发基础, Goroutines和Channels2、基于共享…...

PyTorch 2.5.1: Bugs修复版发布

一&#xff0c;前言 在深度学习框架的不断迭代中&#xff0c;PyTorch 社区始终致力于提供更稳定、更高效的工具。最近&#xff0c;PyTorch 2.5.1 版本正式发布&#xff0c;这个版本主要针对 2.5.0 中发现的问题进行了修复&#xff0c;以提升用户体验。 二&#xff0c;PyTorch 2…...

【Android】组件化嘻嘻嘻gradle耶耶耶

文章目录 Gradle基础总结&#xff1a;gradle-wrapper项目根目录下的 build.gradlesetting.gradle模块中的 build.gradlelocal.properties 和 gradle.properties 组件化&#xff1a;项目下新建一个Gradle文件定义一个ext扩展区域config.gradle全局基础配置&#xff08;使用在项目…...

vulnhub靶场【哈利波特】三部曲之Aragog

前言 使用virtual box虚拟机 靶机&#xff1a;Aragog : 192.168.1.101 攻击&#xff1a;kali : 192.168.1.16 主机发现 使用arp-scan -l扫描&#xff0c;在同一虚拟网卡下 信息收集 使用nmap扫描 发现22端口SSH服务&#xff0c;openssh 80端口HTTP服务&#xff0c;Apach…...

HarmonyOS开发中,如何高效定位并分析内存泄露相关问题

HarmonyOS开发中&#xff0c;如何高效定位并分析内存泄露相关问题 (1)Allocation的应用调试方式Memory泳道Native Allocation泳道 (2)Snapshot(3)ASan的应用使用约束配置参数使能ASan方式一方式二 启用ASanASan检测异常码 (4)HWASan的应用功能介绍约束条件使能HWASan方式一方式…...

java调用ai模型:使用国产通义千问完成基于知识库的问答

整体介绍&#xff1a; 基于RAG&#xff08;Retrieval-Augmented Generation&#xff09;技术&#xff0c;可以实现一个高效的Java智能问答客服机器人。核心思路是将预先准备的问答QA文档&#xff08;例如Word格式文件&#xff09;导入系统&#xff0c;通过数据清洗、向量化处理…...

2023年第十四届蓝桥杯Scratch国赛真题—推箱子

推箱子 程序演示及其源码解析&#xff0c;可前往&#xff1a; https://www.hixinao.com/scratch/creation/show-188.html 若需在线编程&#xff0c;在线测评模考&#xff0c;助力赛事可自行前往题库中心&#xff0c;按需查找&#xff1a; https://www.hixinao.com/ 题库涵盖…...

银河麒麟V10-SP1设置redis开机自启

前言&#xff1a; redis安装请看&#xff1a;银河麒麟V10-SP1离线安装redis5.0.1_银河麒麟v10 redis5.0-CSDN博客 一、编辑自启文件 vim /etc/systemd/system/redis.service [Unit] DescriptionRedis In-Memory Data Store Afternetwork.target [Service] Typeforking ExecS…...

释放超凡性能,打造鸿蒙原生游戏卓越体验

11月26日在华为Mate品牌盛典上&#xff0c;全新Mate70系列及多款全场景新品正式亮相。在游戏领域&#xff0c;HarmonyOS NEXT加持下游戏的性能得到充分释放。HarmonyOS SDK为开发者提供了软硬协同的系统级图形加速解决方案——Graphics Accelerate Kit&#xff08;图形加速服务…...

Node.js 实战: 爬取百度新闻并序列化 - 完整教程

很多时候我们需要爬取一些公开的网页内容来做一些数据分析和统计。而多数时候&#xff0c;大家会用到python &#xff0c;因为实现起来很方便。但是其实Node.js 用来爬取网络内容&#xff0c;也是非常强大的。 今天我向大家介绍一下我自己写的一个百度新闻的爬虫&#xff0c;可…...

106.【C语言】数据结构之二叉树的三种递归遍历方式

目录 1.知识回顾 2.分析二叉树的三种遍历方式 1.总览 2.前序遍历 3.中序遍历 4.后序遍历 5.层序遍历 3.代码实现 1.准备工作 2.前序遍历函数PreOrder 测试结果 3.中序遍历函数InOrder 测试结果 4.后序遍历函数PostOrder 测试结果 4.底层分析 1.知识回顾 在99.…...

qt QToolButton详解

1、概述 QToolButton是Qt框架中的一个控件&#xff0c;它继承自QAbstractButton。QToolButton通常用于工具栏&#xff08;QToolBar&#xff09;中&#xff0c;提供了一种快速访问命令或选项的方式。与普通的QPushButton按钮相比&#xff0c;QToolButton通常只显示一个图标而不…...

2024年大热,Access平替升级方案,也适合Excel用户

欢迎各位看官&#xff0c;您来了&#xff0c;就对了&#xff01; 您多半是Access忠实粉丝&#xff0c;至少是excel用户&#xff0c;亦或是WPS用户吧。那就对了&#xff0c;今天的分享肯定对您有用。 本文1100字&#xff0c;阅读时长2分50秒&#xff01; 现实总是不尽人意&am…...

探索Scala的模式匹配:身份证识别与等级判定!!! #Scala # scala #匹配模式

在Scala编程语言中&#xff0c;模式匹配是一个强大且表达力丰富的特性&#xff0c;它允许我们以声明式的方式处理多种情况。今天&#xff0c;我们将通过两个有趣的例子来展示Scala模式匹配的魅力&#xff1a;身份证号识别和等级判定。 1. 身份证号识别&#xff1a;定位你的家乡…...

python数据分析之爬虫基础:爬虫介绍以及urllib详解

前言 在数据分析中&#xff0c;爬虫有着很大作用&#xff0c;可以自动爬取网页中提取的大量的数据&#xff0c;比如从电商网站手机商品信息&#xff0c;为市场分析提供数据基础。也可以补充数据集、检测动态变化等一系列作用。可以说在数据分析中有着相当大的作用&#xff01;…...

【星海随笔】syslinux

Ubuntu相关资料 https://www.pugetsystems.com/labs/hpc/ubuntu-22-04-server-autoinstall-iso/#Step_2_Unpack_files_and_partition_images_from_the_Ubuntu_2204_live_server_ISO https://launchpad.net/ubuntu/source/squashfs-tools/1:4.6.1-1build1 sudo tar -xf my_compu…...

力扣C语言刷题记录 (二)移除元素

给你一个数组 nums 和一个值 val&#xff0c;你需要 原地 移除所有数值等于 val 的元素。元素的顺序可能发生改变。然后返回 nums 中与 val 不同的元素的数量。 假设 nums 中不等于 val 的元素数量为 k&#xff0c;要通过此题&#xff0c;您需要执行以下操作&#xff1a; 更改…...

【Vue3】【Naive UI】<NAutoComplete>标签

【Vue3】【Naive UI】标签 <NAutoComplete> 是 Naive UI 库中的一个组件&#xff0c;用于实现自动完成或联想输入功能。 它允许用户在输入时看到与当前输入匹配的建议列表&#xff0c;从而帮助用户更快地填写表单字段。 这个组件通常用于搜索框、地址输入等场景&#xff…...

【Halcon】使用均值滤波出现假边怎么办?

在图像处理过程中,均值滤波是一种常见的平滑技术,用于减少图像中的噪声。然而,当应用于具有显著边缘或对比度变化的图像时,均值滤波可能会导致“假边”现象,即原本不存在的边缘在滤波后变得明显。以下是如何在Halcon中处理这一问题,并提供一个完整的示例代码。 示例背景…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...