当前位置: 首页 > news >正文

106.【C语言】数据结构之二叉树的三种递归遍历方式

目录

1.知识回顾

2.分析二叉树的三种遍历方式

1.总览

2.前序遍历

3.中序遍历

4.后序遍历

5.层序遍历

3.代码实现

1.准备工作

2.前序遍历函数PreOrder

测试结果

3.中序遍历函数InOrder

测试结果

4.后序遍历函数PostOrder

测试结果

4.底层分析


1.知识回顾

在99.【C语言】数据结构之二叉树的基本知识文章中提到:任何一棵树都由两部分构成:根和子树,子树又由根和子树构成

因此看见二叉树要本能地做出反应:拆成三部分:根,左子树和右子树,直到遇到空树(叶节点)则停止拆分

 7447cca743864287a76ebeab89df1c1c.png

2.分析二叉树的三种遍历方式

1.总览

前序遍历

中序遍历

后序遍历

层序遍历(要借助队列,本文暂时不讲其代码实现)

e7d5951f3821482fa7550385986249c9.png

下面三种遍历方式都基于上面这张图分析

2.前序遍历(也称先序遍历)

定义:按根-->左子树-->右子树的顺序遍历

遍历顺序:

1(根)-->2(根)-->3(根)-->NULL(3的左子树)-->NULL(3的右子树)-->NULL(2的右子树)-->4(根)-->5(根)-->NULL(5的左子树)-->NULL(5的右子树)-->6(根)-->NULL(6的左子树)-->NULL(6的右子树)

bd1f91734a014b38b19d7b5d86c7676d.png

备注:图中每个方框都代表一棵子树

3.中序遍历

定义:按左子树-->根-->右子树的顺序遍历

这里有一个易错点也是关键点:中序遍历中第一个访问的一定为空!!!!

虽然1的左节点为2,但不能访问2(即不可访问root->data),按中序遍历的定义,要先访问2的左子树;虽然2的左节点为3,但不能访问3,按中序遍历的定义,先访问3左子树;3的左子树为NULL,其没有子树,因此开始访问根(即3),再访问根的右子树NULL,再回归......

左子树访问完才能访问根

遍历顺序:NULL(3的左子树)-->3-->NULL(3的右子树)-->2(根)-->NULL(2的右子树)-->1(根)-->NULL(5的左子树)-->5(根)-->NULL(5的右子树)-->4(根)-->NULL(6的左子树)-->6(根)-->NULL(6的右子树)

dd6d7b25fa2e4f61b4164b0ffe7214d8.png

备注:图中每个方框都代表一棵子树  

4.后序遍历

定义:按左子树-->右子树-->根的顺序遍历

和中序遍历一样,也有一个易错点也是关键点:和中序遍历一样,先访问左子树,因此后序遍历中第一个访问的也一定为空!!!!

遍历顺序:NULL(3的左子树)-->NULL(3的右子树)-->3(根)-->NULL(2的右子树)-->2(根)-->NULL(5的左子树)-->NULL(5的右子树)-->5(根)-->NULL(6的左子树)-->NULL(6的右子树)-->6(根)-->4(根)-->1(根)

3c55dfd99ac743d0801bd39f6d065fec.png

备注:图中每个方框都代表一棵子树   

5.层序遍历

定义:按层的方式遍历(,设n为树的深度,h==1-->h==2-->h==3-->...-->h==n)

遍历顺序:1-->2-->4-->3-->5-->6

h==1为第一层,只有1;h==2为第二层,有2和4;h==3为第三层,有3,5和6;

3.代码实现

1.准备工作

用结构体去定义一个二叉树,其成员变量有:数值域data,结构体指针变量left和right,分别指向其对应的左子树和右子树(写入Tree.h)

typedef int BTDataType;
typedef struct BinaryTreeNode
{BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right;
}BTNode;

定义完二叉树后还要开辟空间函数BuyNode和建立树的函数(写入Tree.c)

BTNode* BuyNode(BTDataType x)
{BTNode* node = (BTNode*)malloc(sizeof(BTNode));if (node == NULL){perror("malloc");return NULL;}node->data = x;node->left = NULL;node->right = NULL;return node;
}

建立指定的二叉树,见下图

 e7d5951f3821482fa7550385986249c9.png

BTNode* CreateTree()
{//写入各个节点的数据域BTNode* node1 = BuyNode(1);BTNode* node2 = BuyNode(2);BTNode* node3 = BuyNode(3);BTNode* node4 = BuyNode(4);BTNode* node5 = BuyNode(5);BTNode* node6 = BuyNode(6);//设置left和right指针node1->left = node2;node1->right = node4;node2->left = node3;node4->left = node5;node4->right = node6;//返回根节点的指针return node1;
}

递归返回的条件:遇到空树(NULL)

2.前序遍历函数PreOrder

按根-->左子树-->右子树的顺序遍历,

即printf("%d ",root->data);-->PreOrder(root->left);-->PreOrder(root->right);

void PreOrder(BTNode* root)
{//先判断是否为空树(叶节点的左节点和右节点均为空树)if (root == NULL){printf("NULL ");return;}//按根-->左子树-->右子树的顺序遍历printf("%d ",root->data);PreOrder(root->left);PreOrder(root->right);
}

注意:一定要先判断是否为空树(叶节点的左节点和右节点均为空树)

测试结果

mainc.c写入以下代码

#include "Tree.h"
int main()
{BTNode* root = CreateTree();PreOrder(root);return 0;
}

4281ea4b0863424e94e65923f055cf78.png

bd1f91734a014b38b19d7b5d86c7676d.png

和前面的图完全符合

3.中序遍历函数InOrder

:按左子树-->根-->右子树的顺序遍历,

即InOrder(root->left);-->printf("%d ", root->data);-->InOrder(root->right);

void InOrder(BTNode* root)
{//先判断是否为空树(叶节点的左节点和右节点均为空树)if (root == NULL){printf("NULL ");return;}//按左子树-->根-->右子树的顺序遍历InOrder(root->left);printf("%d ", root->data);InOrder(root->right);
}

注意:一定要先判断是否为空树(叶节点的左节点和右节点均为空树) 

测试结果

mainc.c写入以下代码

#include "Tree.h"
int main()
{BTNode* root = CreateTree();InOrder(root);return 0;
}

 f61598a6904e4cbda6aed0047cf9623a.png

dd6d7b25fa2e4f61b4164b0ffe7214d8.png 和前面的图完全符合

4.后序遍历函数PostOrder

按左子树-->右子树-->根的顺序遍历,

即PostOrder(root->left);-->PostOrder(root->right);-->printf("%d ", root->data);

void PostOrder(BTNode* root)
{//先判断是否为空树(叶节点的左节点和右节点均为空树)if (root == NULL){printf("NULL ");return;}//按左子树-->右子树-->根的顺序遍历PostOrder(root->left);PostOrder(root->right);printf("%d ", root->data);
}

注意:一定要先判断是否为空树(叶节点的左节点和右节点均为空树) 

测试结果

mainc.c写入以下代码

#include "Tree.h"
int main()
{BTNode* root = CreateTree();PostOrder(root);return 0;
}

ce1b1e00233142dd8d34a81c9d87d242.png

3c55dfd99ac743d0801bd39f6d065fec.png

和前面的图完全符合

4.底层分析

每调用一次PreOrder或InOrder或PostOrder函数就压入栈区,返回时出栈

在E41.【C语言】练习:斐波那契函数的空间复杂度的计算及函数调用分析文章中讲过了函数调用的堆栈分析,这里不再赘述

附一张PreOrder的调用图

e355fba3c180434e980b6c08259c252d.jpeg

附一张InOrder的调用图

9f446891de6c4ce1895580ce6945bc38.jpeg

相关文章:

106.【C语言】数据结构之二叉树的三种递归遍历方式

目录 1.知识回顾 2.分析二叉树的三种遍历方式 1.总览 2.前序遍历 3.中序遍历 4.后序遍历 5.层序遍历 3.代码实现 1.准备工作 2.前序遍历函数PreOrder 测试结果 3.中序遍历函数InOrder 测试结果 4.后序遍历函数PostOrder 测试结果 4.底层分析 1.知识回顾 在99.…...

qt QToolButton详解

1、概述 QToolButton是Qt框架中的一个控件,它继承自QAbstractButton。QToolButton通常用于工具栏(QToolBar)中,提供了一种快速访问命令或选项的方式。与普通的QPushButton按钮相比,QToolButton通常只显示一个图标而不…...

2024年大热,Access平替升级方案,也适合Excel用户

欢迎各位看官,您来了,就对了! 您多半是Access忠实粉丝,至少是excel用户,亦或是WPS用户吧。那就对了,今天的分享肯定对您有用。 本文1100字,阅读时长2分50秒! 现实总是不尽人意&am…...

探索Scala的模式匹配:身份证识别与等级判定!!! #Scala # scala #匹配模式

在Scala编程语言中,模式匹配是一个强大且表达力丰富的特性,它允许我们以声明式的方式处理多种情况。今天,我们将通过两个有趣的例子来展示Scala模式匹配的魅力:身份证号识别和等级判定。 1. 身份证号识别:定位你的家乡…...

python数据分析之爬虫基础:爬虫介绍以及urllib详解

前言 在数据分析中,爬虫有着很大作用,可以自动爬取网页中提取的大量的数据,比如从电商网站手机商品信息,为市场分析提供数据基础。也可以补充数据集、检测动态变化等一系列作用。可以说在数据分析中有着相当大的作用!…...

【星海随笔】syslinux

Ubuntu相关资料 https://www.pugetsystems.com/labs/hpc/ubuntu-22-04-server-autoinstall-iso/#Step_2_Unpack_files_and_partition_images_from_the_Ubuntu_2204_live_server_ISO https://launchpad.net/ubuntu/source/squashfs-tools/1:4.6.1-1build1 sudo tar -xf my_compu…...

力扣C语言刷题记录 (二)移除元素

给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素。元素的顺序可能发生改变。然后返回 nums 中与 val 不同的元素的数量。 假设 nums 中不等于 val 的元素数量为 k,要通过此题,您需要执行以下操作: 更改…...

【Vue3】【Naive UI】<NAutoComplete>标签

【Vue3】【Naive UI】标签 <NAutoComplete> 是 Naive UI 库中的一个组件&#xff0c;用于实现自动完成或联想输入功能。 它允许用户在输入时看到与当前输入匹配的建议列表&#xff0c;从而帮助用户更快地填写表单字段。 这个组件通常用于搜索框、地址输入等场景&#xff…...

【Halcon】使用均值滤波出现假边怎么办?

在图像处理过程中,均值滤波是一种常见的平滑技术,用于减少图像中的噪声。然而,当应用于具有显著边缘或对比度变化的图像时,均值滤波可能会导致“假边”现象,即原本不存在的边缘在滤波后变得明显。以下是如何在Halcon中处理这一问题,并提供一个完整的示例代码。 示例背景…...

Flask+Minio实现断点续传技术教程

什么是MinIO MinIO是一个高性能的分布式对象存储服务&#xff0c;与Amazon S3 API兼容。它允许用户存储和检索任意规模的数据&#xff0c;非常适合于使用S3 API的应用程序。MinIO支持多租户存储&#xff0c;提供高可用性、高扩展性、强一致性和数据持久性。它还可以作为软件定义…...

JAVA设计模式,动态代理模式

动态代理&#xff08;Dynamic Proxy&#xff09;是Java中一种非常有用的设计模式。它允许在运行时创建一个实现了一组给定接口的新类。这种模式主要用于当需要为某个对象提供一个代理以控制对该对象的访问时。通过这种方式&#xff0c;可以添加额外的功能&#xff0c;如事务管理…...

HTML 快速上手

目录 一. HTML概念 二. HTML标签 1. 标题标签 2. 段落标签 3. 换行标签 4. 图片标签 5. 超链接标签 6. 表格标签 7. 表单标签 7.1 form 标签 7.2 input 标签 (1) 文本框 (2) 单选框 (3) 密码框 (4) 复选框 (5) 普通按钮 (6) 提交按钮 8. select标签 9. 无语义…...

【计算机视觉算法与应用】模板匹配、图像配准

目录 1. 基于灰度值的模板匹配 2. 基于相关性的模板匹配 3. 基于形状的模板匹配 4. 基于组件的模板识别 5. 基于形变的模板匹配 6. 基于描述符的模板匹配 7. 基于点的模板匹配 性能比较 模板匹配的算法实现需要结合具体需求和应用场景来选择方法。以下是基于 OpenCV 的…...

【Linux】设计文件系统(C实现)

要求&#xff1a; (1)可以实现下列几条命令 dir 列文件目录 create 创建文件 delete 删除文件 read 读文件 write 写文件 (2)列目录时要列出文件名、存取权限&#xff08;八进制&#xff09;、文件长度、时间&#xff08;创建时间&#xff0c;修改时间以及…...

详解Rust多线程编程

文章目录 多线程模型创建和管理线程自定义线程行为线程传递数据线程间通信线程池错误处理与线程Condvar(条件变量)无锁并发高性能并发库 Rust的多线程编程提供了一种安全、高效的方式来进行并发操作。Rust的并发性设计原则之一是确保线程安全&#xff0c;同时避免运行时的开销&…...

el-upload上传多个文件,一次请求,Django接收

1、:file-list"fileList" :on-change"handleChange" 将文件赋值到fileList 2、 :auto-upload"false" 手动触发上传 写个按钮点击执行这个 this.$refs.upload.submit(); 3、自己写上传&#xff0c;不会再触发上传成功或失败回调 4、 request.FI…...

Python实现网站资源批量下载【可转成exe程序运行】

Python实现网站资源批量下载【可转成exe程序运行】 背景介绍解决方案转为exe可执行程序简单点说详细了解下 声明 背景介绍 发现 宣讲家网 的PPT很好&#xff0c;作为学习资料使用很有价值&#xff0c;所以想下载网站的PPT课件到本地&#xff0c;但是由于网站限制&#xff0c;一…...

《JavaScript高级程序设计》读书笔记 20

感谢点赞、关注和收藏&#xff01; 原始值包装类型 为了方便操作原始值&#xff0c;ECMAScript 提供了 3 种特殊的引用类型&#xff1a;Boolean、Number 和 String。每当用到某个原始值的方法或属性时&#xff0c;后台都会创建一个相应原始包装类型的对象&#xff0c;从而暴露…...

ASP.NET Core项目中使用SqlSugar连接多个数据库的方式

之前学习ASP.NETCore及SqlSugar时都是只连接单个数据库处理数据&#xff0c;仅需在Program文件中添加ISqlSugarClient的单例即可&#xff08;如下代码所示&#xff09;。 builder.Services.AddSingleton<ISqlSugarClient>(s > {SqlSugarScope sqlSugar new SqlSugar…...

Java面试八股文(精选、纯手打)

全国内大厂Java面试高频题库 本小册内容涵盖&#xff1a;Java基础&#xff0c;JVM&#xff0c;多线程&#xff0c;数据库&#xff08;MySQL/Redis&#xff09;SSM&#xff0c;Dubbo&#xff0c;网络&#xff0c;MQ&#xff0c;Zookeeper&#xff0c;Netty&#xff0c;微服务&a…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 &#xff08;一&#xff09;项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台&#xff0c;其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言&#xff0c;首次接触 OpenBCI 设备时&#xff0c;往…...