当前位置: 首页 > news >正文

[高等数学学习记录] 泰勒公式

1 知识点

1.1 要求

为简化计算, 通常用多项式近似表达复杂函数:

设函数 f ( x ) f(x) f(x) 在含有 x 0 x_0 x0 的开区间内具有 ( n + 1 ) (n+1) (n+1) 阶导数, 试找出一个关于 ( x − x 0 ) (x-x_0) (xx0) n n n 次多项式 p n ( x ) p_n(x) pn(x) 近似表达 f ( x ) f(x) f(x);

要求 p n ( x ) p_n(x) pn(x) f ( x ) f(x) f(x) 之差是比 ( x − x 0 ) n (x-x_0)^n (xx0)n 高阶的无穷小, 并给出误差 ∣ f ( x ) − p n ( x ) ∣ |f(x)-p_n(x)| f(x)pn(x) 的具体表达式.


1.2 泰勒多项式

p n ( x ) p_n(x) pn(x) 的形式为:

p n ( x ) = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + ⋯ + a n ( x − x 0 ) n ( 1 ) p_n(x)=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots + a_n(x-x_0)^n \qquad (1) pn(x)=a0+a1(xx0)+a2(xx0)2++an(xx0)n(1)

假设 p n ( x ) p_n(x) pn(x) f ( x ) f(x) f(x) x 0 x_0 x0 处的函数值相等, 且同阶导数在 x 0 x_0 x0 处的值也相等, 得:

f ( x 0 ) = p n ( x 0 ) f ′ ( x 0 ) = p n ′ ( x 0 ) f ′ ′ ( x 0 ) = p n ′ ′ ( x 0 ) ⋯ f ( n ) ( x 0 ) = p n ( n ) ( x 0 ) } ( 2 ) \left.\begin{aligned}f(x_0)=p_n(x_0)\\f'(x_0)=p'_n(x_0)\\f''(x_0)=p''_n(x_0)\\ \cdots\\f^{(n)}(x_0)=p_n^{(n)}(x_0)\end{aligned}\right\}\qquad (2) f(x0)=pn(x0)f(x0)=pn(x0)f′′(x0)=pn′′(x0)f(n)(x0)=pn(n)(x0) (2)

( 1 ) (1) (1) 式和 ( 2 ) (2) (2) 式得:

f ( x 0 ) = p n ( x 0 ) = a 0 + 0 + ⋯ + 0 = a 0 f ′ ( x 0 ) = p n ′ ( x 0 ) = 0 + a 1 ⋅ 1 + 0 + ⋯ + 0 = a 1 f ′ ′ ( x 0 ) = p n ′ ′ ( x 0 ) = 0 + 0 + a 2 ⋅ 2 ! + 0 + ⋯ + 0 = a 2 ⋅ 2 ! ⋯ f ( n ) ( x 0 ) = p ( n ) ( x 0 ) = 0 + ⋯ + 0 + a n ⋅ n ! = a n ⋅ n ! } ( 3 ) \left.\begin{aligned}f(x_0)=p_n(x_0)=a_0+0+\cdots +0=a_0 \\ f'(x_0)=p'_n(x_0)=0+a_1\cdot 1+0+\cdots +0=a_1 \\ f''(x_0)=p''_n(x_0)=0+0+a_2\cdot 2! +0+\cdots +0 = a_2\cdot2!\\ \cdots \\ f^{(n)}(x_0)=p^{(n)}(x_0)=0+\cdots +0+a_n\cdot n!= a_n\cdot n!\end{aligned}\right\}\qquad (3) f(x0)=pn(x0)=a0+0++0=a0f(x0)=pn(x0)=0+a11+0++0=a1f′′(x0)=pn′′(x0)=0+0+a22!+0++0=a22!f(n)(x0)=p(n)(x0)=0++0+ann!=ann! (3)

( 3 ) (3) (3) 式变换, 得:

a 0 = f ( x 0 ) a 1 = f ′ ( x 0 ) a 2 = f ′ ′ ( x 0 ) 2 ! ⋯ a n = f ( n ) ( x 0 ) n ! } ( 4 ) \left.\begin{aligned}a_0=f(x_0) \\ a_1=f'(x_0) \\ a_2=\frac{f''(x_0)}{2!} \\ \cdots \\ a_n=\frac{f^{(n)}(x_0)}{n!}\end{aligned}\right\}\qquad (4) a0=f(x0)a1=f(x0)a2=2!f′′(x0)an=n!f(n)(x0) (4)

( 4 ) (4) (4) 式代入 ( 1 ) (1) (1) 式, 得:

p n ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n ( 5 ) p_n(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots +\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n\qquad (5) pn(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2++n!f(n)(x0)(xx0)n(5)

( 5 ) (5) (5) 式称为函数 f ( x ) f(x) f(x) ( x − x 0 ) (x-x_0) (xx0) 的幂展开的 n n n 次泰勒多项式, 是函数 f ( x ) f(x) f(x) 的近似表达.


1.3 带有拉格朗日型余项的泰勒公式

[泰勒(Taylor)中值定理] 如果函数 f ( x ) f(x) f(x) 在含有 x 0 x_0 x0 的某个开区间 ( a , b ) (a,b) (a,b) 内具有直到 ( n + 1 ) (n+1) (n+1) 阶的导数,则对任一 x ∈ ( a , b ) x\in(a,b) x(a,b),有:

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) ( 6 ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x) \qquad (6) f(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2++n!f(n)(x0)(xx0)n+Rn(x)(6)

其中,

R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 ( 7 ) R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}\qquad (7) Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1(7)

公式 ( 6 ) (6) (6) 称为函数 f ( x ) f(x) f(x) ( x − x 0 ) (x-x_0) (xx0) 的幂展开的带有拉格朗日型余项的 n n n 阶泰勒公式.

公式 ( 7 ) (7) (7) 称为拉格朗日型余项,其中的 ξ \xi ξ 介于 x 0 x_0 x0 x x x 之间.

n = 0 n=0 n=0 时,泰勒公式变成拉格朗日中值公式 f ( x ) = f ( x 0 ) + f ′ ( ξ ) ( x − x 0 ) f(x)=f(x_0)+f'(\xi)(x-x_0) f(x)=f(x0)+f(ξ)(xx0) ξ \xi ξ 介于 x 0 x_0 x0 x x x 之间).

如果 x 0 = 0 x_0=0 x0=0,则 ξ ∈ ( 0 , x ) \xi\in(0,x) ξ(0,x),可以令 ξ = θ x ( 0 < θ < 1 ) \xi=\theta x(0<\theta <1) ξ=θx(0<θ<1) .


1.4 泰勒公式的误差

以多项式 p n ( x ) p_n(x) pn(x) 近似表达函数 f ( x ) f(x) f(x) 时, 其误差为 ∣ R n ( x ) ∣ |R_n(x)| Rn(x) .

如果对于某个固定的 n n n, 当 x ∈ ( a , b ) x\in (a,b) x(a,b) 时, ∣ f ( n + 1 ) ( x ) ∣ ≤ M |f^{(n+1)}(x)|\leq M f(n+1)(x)M, 则有:

∣ R n ( x ) ∣ = ∣ f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 ∣ ≤ M ( n + 1 ) ! ∣ x − x 0 ∣ n + 1 ( 8 ) \begin{vmatrix}R_n(x)\end{vmatrix}=\begin{vmatrix}\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}\end{vmatrix}\leq \frac{M}{(n+1)!}\begin{vmatrix}x-x_0\end{vmatrix}^{n+1}\qquad (8) Rn(x) = (n+1)!f(n+1)(ξ)(xx0)n+1 (n+1)!M xx0 n+1(8)

lim ⁡ x → x 0 R n ( x ) ( x − x 0 ) n = 0 ( 9 ) \lim_{x\rightarrow x_0}\frac{R_n(x)}{(x-x_0)^n}=0\qquad (9) xx0lim(xx0)nRn(x)=0(9)

可见, 当 x → x 0 x\rightarrow x_0 xx0 时, 误差 ∣ R n ( x ) ∣ |R_n(x)| Rn(x) 是比 ( x − x 0 ) n (x-x_0)^n (xx0)n 高阶的无穷小, 即:

R n ( x ) = o [ ( x − x 0 ) n ] ( 10 ) R_n(x)=o[(x-x_0)^n]\qquad (10) Rn(x)=o[(xx0)n](10)

公式 ( 10 ) (10) (10) 称为佩亚诺(Peano)型余项.


1.5 带有佩亚诺型余项的泰勒公式

在不需要余项的精确表达时, n n n 阶泰勒公式也可写成:

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + o [ ( x − x 0 ) n ] ( 11 ) f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+o[(x-x_0)^n]\qquad (11) f(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2++n!f(n)(x0)(xx0)n+o[(xx0)n](11)

公式 ( 11 ) (11) (11) 称为 f ( x ) f(x) f(x) ( x − x 0 ) (x-x_0) (xx0) 的幂展开的带有佩亚诺型余项的 n n n 阶泰勒公式.


1.6 带有拉格朗日型余项的麦克劳林公式

公式 ( 6 ) (6) (6) 中,如果取 x 0 = 0 x_0=0 x0=0,则 ξ \xi ξ 0 0 0 x x x 之间. 因此可以令 ξ = θ x ( 0 < θ < 1 ) \xi=\theta x(0<\theta <1) ξ=θx(0<θ<1) ,从而泰勒公式变为带有拉格朗日型余项的麦克劳林公式:

f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + f ( n + 1 ) ( θ x ) ( n + 1 ) ! x n + 1 ( 0 < θ < 1 ) ( 12 ) . f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\cdots +\frac{f^{(n)}(0)}{n!}x^n+\frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}(0<\theta<1)\qquad (12). f(x)=f(0)+f(0)x+2!f′′(0)x2++n!f(n)(0)xn+(n+1)!f(n+1)(θx)xn+1(0<θ<1)(12).


1.7 带有佩亚诺型余项的麦克劳林公式

如果取 x 0 = 0 x_0=0 x0=0,则公式 ( 11 ) (11) (11) 变换为带有佩亚诺型余项的麦克劳林公式:

f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + o ( x n ) ( 13 ) f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\cdots +\frac{f^{(n)}(0)}{n!}x^n+o(x^n) \qquad (13) f(x)=f(0)+f(0)x+2!f′′(0)x2++n!f(n)(0)xn+o(xn)(13)


2 练习题

[题1] 按 ( x − 4 ) (x-4) (x4) 的幂展开多项式 f ( x ) = x 4 − 5 x 3 + x 2 − 3 x + 4 f(x)=x^4-5x^3+x^2-3x+4 f(x)=x45x3+x23x+4.

[解]

根据公式 ( 5 ) (5) (5) 得:

p n ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n p_n(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots +\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n pn(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2++n!f(n)(x0)(xx0)n

此题 x 0 = 4 x_0=4 x0=4:

原式 = f ( 4 ) + f ′ ( 4 ) ( x − 4 ) + f ′ ′ ( 4 ) 2 ! ( x − 4 ) 2 + f ′ ′ ′ ( 4 ) 3 ! ( x − 4 ) 3 + f ( 4 ) 4 ! ( x − 4 ) 4 + 0 + ⋯ + 0 =f(4)+f'(4)(x-4)+\frac{f''(4)}{2!}(x-4)^2+\frac{f'''(4)}{3!}(x-4)^3+\frac{f^{(4)}}{4!}(x-4)^4+0+\cdots +0 =f(4)+f(4)(x4)+2!f′′(4)(x4)2+3!f′′′(4)(x4)3+4!f(4)(x4)4+0++0

= − 56 + 21 ( x − 4 ) + 37 ( x − 4 ) 2 + 11 ( x − 4 ) 3 + ( x − 4 ) 4 =-56+21(x-4)+37(x-4)^2+11(x-4)^3+(x-4)^4 =56+21(x4)+37(x4)2+11(x4)3+(x4)4


[题2] 应用麦克劳林公式,按 x x x 的幂展开函数 f ( x ) = ( x 2 − 3 x + 1 ) 3 f(x)=(x^2-3x+1)^3 f(x)=(x23x+1)3.

[解]

根据麦克劳林公式得:

p n ( x ) p_n(x) pn(x)

= f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x + ⋯ + f ( 6 ) ( 0 ) 6 ! x + 0 + ⋯ + 0 =f(0)+f'(0)x+\frac{f''(0)}{2!}x+\cdots +\frac{f^{(6)}(0)}{6!}x+0+\cdots +0 =f(0)+f(0)x+2!f′′(0)x++6!f(6)(0)x+0++0

= 1 − 9 x + 30 x 2 − 45 x 3 + 30 x 4 − 9 x 5 + x 6 =1-9x+30x^2-45x^3+30x^4-9x^5+x^6 =19x+30x245x3+30x49x5+x6


[题3] 求函数 f ( x ) = x f(x)=\sqrt{x} f(x)=x ( x − 4 ) (x-4) (x4) 的幂展开的带有拉格朗日型余项的3阶泰勒公式.

[解]

根据公式 ( 6 ) (6) (6), 且 x 0 = 4 x_0=4 x0=4 得:

f ( x ) f(x) f(x)

= x =\sqrt{x} =x

= f ( 4 ) + f ′ ( 4 ) ( x − 4 ) + f ′ ′ ( 4 ) 2 ! ( x − 4 ) 2 + f ′ ′ ′ ( 4 ) 3 ! ( x − 4 ) 3 + f ( 4 ) ( ξ ) 4 ! ( x − 4 ) 4 =f(4)+f'(4)(x-4)+\frac{f''(4)}{2!}(x-4)^2+\frac{f'''(4)}{3!}(x-4)^3+\frac{f^{(4)}(\xi)}{4!}(x-4)^4 =f(4)+f(4)(x4)+2!f′′(4)(x4)2+3!f′′′(4)(x4)3+4!f(4)(ξ)(x4)4

= 2 + x − 4 4 − ( x − 4 ) 2 64 + ( x − 4 ) 3 512 − 5 ξ − 7 2 ( x − 4 ) 4 128 =2+\frac{x-4}{4}-\frac{(x-4)^2}{64}+\frac{(x-4)^3}{512}-\frac{5\xi^{-\frac{7}{2}}(x-4)^4}{128} =2+4x464(x4)2+512(x4)31285ξ27(x4)4 ξ \xi ξ 介于 4 4 4 x x x 之间)


[题4] 求函数 f ( x ) = l n x f(x)=lnx f(x)=lnx ( x − 2 ) (x-2) (x2) 的幂展开的带有佩亚诺型余项的 n n n 阶泰勒公式.

[解]

根据公式 ( 11 ) (11) (11) ,且 x 0 = 0 x_0=0 x0=0 得:

f ( x ) f(x) f(x)

= l n x =lnx =lnx

= f ( 2 ) + f ′ ( 2 ) ( x − 2 ) + f ′ ′ ( 2 ) 2 ! ( x − 2 ) 2 + ⋯ + f ( n ) ( 2 ) n ! ( x − 2 ) n + o [ ( x − 2 ) n ] =f(2)+f'(2)(x-2)+\frac{f''(2)}{2!}(x-2)^2+\cdots + \frac{f^{(n)}(2)}{n!}(x-2)^n+o[(x-2)^n] =f(2)+f(2)(x2)+2!f′′(2)(x2)2++n!f(n)(2)(x2)n+o[(x2)n]

= l n 2 + x − 2 2 − ( x − 2 ) 2 2 3 + ⋯ + ( − 1 ) n − 1 ( x − 2 ) n n ⋅ 2 n + o [ ( x − 2 ) n ] =ln2+\frac{x-2}{2}-\frac{(x-2)^2}{2^3}+\cdots + \frac{(-1)^{n-1}(x-2)^n}{n\cdot 2^n}+o[(x-2)^n] =ln2+2x223(x2)2++n2n(1)n1(x2)n+o[(x2)n]


[题5] 求函数 f ( x ) = 1 x f(x)=\frac{1}{x} f(x)=x1 ( x + 1 ) (x+1) (x+1) 的幂展开的带有拉格朗日型余项的 n n n 阶泰勒公式.

[解]

根据公式 ( 6 ) (6) (6) ,且 x 0 = − 1 x_0=-1 x0=1 得:

f ( x ) f(x) f(x)

= 1 x =\frac{1}{x} =x1

= f ( − 1 ) + f ′ ( − 1 ) ( x + 1 ) + f ′ ′ ( − 1 ) 2 ! ( x + 1 ) 2 + ⋯ + f ( n ) ( − 1 ) n ! ( x + 1 ) n + f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x + 1 ) n + 1 =f(-1)+f'(-1)(x+1)+\frac{f''(-1)}{2!}(x+1)^2+\cdots +\frac{f^{(n)}(-1)}{n!}(x+1)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x+1)^{n+1} =f(1)+f(1)(x+1)+2!f′′(1)(x+1)2++n!f(n)(1)(x+1)n+(n+1)!f(n+1)(ξ)(x+1)n+1

= − 1 − ( x + 1 ) − ( x + 1 ) 2 + ⋯ + ( − 1 ) ( x + 1 ) n + ( − 1 ) n + 1 ( x + 1 ) n + 1 ξ n + 2 =-1-(x+1)-(x+1)^2+\cdots +(-1)(x+1)^n+(-1)^{n+1}\frac{(x+1)^{n+1}}{\xi^{n+2}} =1(x+1)(x+1)2++(1)(x+1)n+(1)n+1ξn+2(x+1)n+1( ξ \xi ξ 介于 − 1 -1 1 x x x 之间).


[题6] 求函数 f ( x ) = t a n x f(x)=tanx f(x)=tanx 的带有佩亚诺型余项的 3 3 3 阶麦克劳林公式.

[解]

根据公式 ( 13 ) (13) (13) 得:

f ( x ) f(x) f(x)

= t a n x =tanx =tanx

= f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 x 2 + f ′ ′ ′ ( 0 ) 6 x 3 + o ( x 3 ) =f(0)+f'(0)x+\frac{f''(0)}{2}x^2+\frac{f'''(0)}{6}x^3+o(x^3) =f(0)+f(0)x+2f′′(0)x2+6f′′′(0)x3+o(x3)

= 0 + x s e c 2 0 + 2 s e c 2 0 t a n 0 2 x 2 + 4 s e c 2 x t a n 2 0 + 2 s e c 4 0 6 x 3 + o ( x 3 ) =0+xsec^20+\frac{2sec^20tan0}{2}x^2+\frac{4sec^2xtan^20+2sec^40}{6}x^3+o(x^3) =0+xsec20+22sec20tan0x2+64sec2xtan20+2sec40x3+o(x3)

= x + 1 3 x 3 + o ( x 3 ) =x+\frac{1}{3}x^3+o(x^3) =x+31x3+o(x3)


[题7] 求函数 f ( x ) = x e x f(x)=xe^x f(x)=xex 的带有佩亚诺型余项的 n n n 阶麦克劳林公式.

[解]

根据公式 ( 13 ) (13) (13) 得:

f ( x ) f(x) f(x)

= x e x =xe^x =xex

= f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 ! x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + o ( x n ) =f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\cdots + \frac{f^{(n)}(0)}{n!}x^n+o(x^n) =f(0)+f(0)x+2!f′′(0)x2++n!f(n)(0)xn+o(xn)

= 0 + x + 2 x 2 2 ! + 3 x 3 3 ! + ⋯ + n n ! x n + o ( x n ) =0+x+\frac{2x^2}{2!}+\frac{3x^3}{3!}+\cdots +\frac{n}{n!}x^n+o(x^n) =0+x+2!2x2+3!3x3++n!nxn+o(xn)

= x + x 2 + x 3 2 + ⋯ + x n ( n − 1 ) ! + o ( x n ) =x+x^2+\frac{x^3}{2}+\cdots +\frac{x^n}{(n-1)!}+o(x^n) =x+x2+2x3++(n1)!xn+o(xn)


[题8] 验证当 0 < x ≤ 1 2 0<x\leq \frac{1}{2} 0<x21 时,按公式 e x ≈ 1 + x + x 2 2 + x 3 6 e^x\approx 1+x+\frac{x^2}{2}+\frac{x^3}{6} ex1+x+2x2+6x3 计算 e x e^x ex 的近似值时,所产生的误差小于 0.01 0.01 0.01,并求 e \sqrt{e} e 的近似值,使误差小于 0.01 0.01 0.01.

[解]

根据泰勒中值定理得:

e x e^x ex 1 + x + x 2 2 + x 3 6 1+x+\frac{x^2}{2}+\frac{x^3}{6} 1+x+2x2+6x3 之间得误差为 ∣ e ξ 24 x 4 ∣ \begin{vmatrix}\frac{e^{\xi}}{24}x^4\end{vmatrix} 24eξx4 ( ξ \xi ξ 介于 0 0 0 x x x 之间),即拉格朗日型余项.

∵ 0 < x ≤ 1 2 \because 0<x\leq \frac{1}{2} 0<x21

∴ 0 < ξ ≤ 1 2 \therefore 0<\xi \leq \frac{1}{2} 0<ξ21

∴ ∣ e ξ 24 x 4 ∣ ≤ e 1 2 24 ⋅ 2 4 < 0.01 \therefore \begin{vmatrix}\frac{e^\xi}{24}x^4\end{vmatrix}\leq \frac{e^\frac{1}{2}}{24\cdot 2^4}<0.01 24eξx4 2424e21<0.01

∴ e = e 1 2 ≈ 1 + 1 2 + 1 2 ⋅ ( 1 2 ) 3 + 1 6 ⋅ ( 1 2 ) 3 = 1 + 1 2 + 1 8 + 1 48 = 79 48 ≈ 1.646 \therefore \sqrt{e}=e^{\frac{1}{2}}\approx 1+\frac{1}{2}+\frac{1}{2}\cdot (\frac{1}{2})^3+\frac{1}{6}\cdot (\frac{1}{2})^3=1+\frac{1}{2}+\frac{1}{8}+\frac{1}{48}=\frac{79}{48}\approx 1.646 e =e211+21+21(21)3+61(21)3=1+21+81+481=48791.646


[题9] 应用 3 3 3 阶泰勒公式求下列各数的近似值,并估计误差:

(1) 30 3 \sqrt[3]{30} 330

(2) s i n 1 8 ∘ sin18^\circ sin18

[解(1)]

f ( x ) = 3 1 + x 3 f(x)=3\sqrt[3]{1+x} f(x)=331+x ,则 f ( 1 9 ) = 30 3 f(\frac{1}{9})=\sqrt[3]{30} f(91)=330

f ( x ) = 3 1 + x 3 = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 x 2 + f ′ ′ ′ ( 0 ) 6 x 3 + f ( 4 ) ( ξ ) 24 x 4 f(x)=3\sqrt[3]{1+x}=f(0)+f'(0)x+\frac{f''(0)}{2}x^2+\frac{f'''(0)}{6}x^3+\frac{f^{(4)}(\xi)}{24}x^4 f(x)=331+x =f(0)+f(0)x+2f′′(0)x2+6f′′′(0)x3+24f(4)(ξ)x4( ξ \xi ξ 介于 0 0 0 1 9 \frac{1}{9} 91 之间)

∴ 30 3 = f ( 1 9 ) ≈ f ( 0 ) + f ′ ( 0 ) ⋅ 1 9 + f ′ ′ ( 0 ) 2 ⋅ 1 81 + f ′ ′ ′ ( 0 ) 6 ⋅ 1 729 \therefore \sqrt[3]{30}=f(\frac{1}{9})\approx f(0)+f'(0)\cdot \frac{1}{9}+\frac{f''(0)}{2}\cdot \frac{1}{81}+\frac{f'''(0)}{6}\cdot \frac{1}{729} 330 =f(91)f(0)+f(0)91+2f′′(0)811+6f′′′(0)7291

= 3 + 1 9 − 2 3 ⋅ 1 2 ⋅ 1 9 2 + 10 9 ⋅ 1 6 ⋅ 1 9 3 ≈ 3.1092 =3+\frac{1}{9}-\frac{2}{3}\cdot \frac{1}{2}\cdot \frac{1}{9^2}+\frac{10}{9}\cdot \frac{1}{6}\cdot \frac{1}{9^3}\approx 3.1092 =3+913221921+910619313.1092

其误差为 ∣ f ( 4 ) ( ξ ) 24 x 4 ∣ = ∣ 80 27 ⋅ 4 ! ⋅ 9 4 ( 1 + ξ ) − 11 3 ∣ < 80 27 ⋅ 4 ! ⋅ 9 4 ≈ 1.8817 × 1 0 − 5 \begin{vmatrix}\frac{f^{(4)}(\xi)}{24}x^4\end{vmatrix}=\begin{vmatrix}\frac{80}{27\cdot 4!\cdot 9^4}(1+\xi)^{-\frac{11}{3}}\end{vmatrix}<\frac{80}{27\cdot 4!\cdot 9^4}\approx1.8817\times10^{-5} 24f(4)(ξ)x4 = 274!9480(1+ξ)311 <274!94801.8817×105

[解(2)]

s i n 1 8 ∘ = s i n π 10 sin18^\circ=sin\frac{\pi}{10} sin18=sin10π

f ( x ) = s i n x f(x)=sinx f(x)=sinx

利用带拉格朗日型余项的泰勒公式进行计算:

f ( x ) = s i n x = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 x 2 + f ′ ′ ′ ( 0 ) 6 x 3 + f ( 4 ) ( ξ ) 24 x 4 f(x)=sinx=f(0)+f'(0)x+\frac{f''(0)}{2}x^2+\frac{f'''(0)}{6}x^3+\frac{f^{(4)}(\xi)}{24}x^4 f(x)=sinx=f(0)+f(0)x+2f′′(0)x2+6f′′′(0)x3+24f(4)(ξ)x4 ξ \xi ξ 介于 0 0 0 x x x 之间)

∴ s i n 1 8 ∘ = f ( π 10 ) = sin ⁡ π 10 ≈ 0 + 1 ⋅ π 10 − 0 − 1 6 ⋅ ( π 10 ) 3 ≈ 0.3090 \therefore sin18^\circ=f(\frac{\pi}{10})=\sin\frac{\pi}{10}\approx 0+1\cdot \frac{\pi}{10}-0-\frac{1}{6}\cdot (\frac{\pi}{10})^3\approx 0.3090 sin18=f(10π)=sin10π0+110π061(10π)30.3090

利用拉格朗日型余项表示上述计算的误差:

∣ R n ( x ) ∣ = ∣ f ( 4 ) ( ξ ) 24 x 4 ∣ = ∣ s i n ξ 24 ( π 10 ) 4 ∣ < s i n π 10 24 ( π 10 ) 4 ≈ 0.000125 \begin{vmatrix}R_n(x)\end{vmatrix}=\begin{vmatrix}\frac{f^{(4)}(\xi)}{24}x^4\end{vmatrix}=\begin{vmatrix}\frac{sin\xi}{24}(\frac{\pi}{10})^4\end{vmatrix}<\frac{sin\frac{\pi}{10}}{24}(\frac{\pi}{10})^4\approx 0.000125 Rn(x) = 24f(4)(ξ)x4 = 24sinξ(10π)4 <24sin10π(10π)40.000125


[题10] 利用泰勒公式极限 lim ⁡ x → + ∞ ( x 3 + 3 x 2 3 − x 4 − 2 x 3 4 ) \lim_{x\rightarrow +\infty}(\sqrt[3]{x^3+3x^2}-\sqrt[4]{x^4-2x^3}) limx+(3x3+3x2 4x42x3 ).

[解]

t = 1 x t=\frac{1}{x} t=x1

原式 = lim ⁡ t → 0 1 + 3 t 3 − 1 − 2 t 4 t =\lim_{t\rightarrow 0}\frac{\sqrt[3]{1+3t}-\sqrt[4]{1-2t}}{t} =limt0t31+3t 412t

利用带佩亚诺型余项的麦克劳林公式得:

1 + 3 t 3 = f ( 0 ) + f ′ ( 0 ) t + o ( t ) = 1 + t + o ( t ) \sqrt[3]{1+3t}=f(0)+f'(0)t+o(t)=1+t+o(t) 31+3t =f(0)+f(0)t+o(t)=1+t+o(t)

1 − 2 t 4 = 1 − 1 2 t + o ( t ) \sqrt[4]{1-2t}=1-\frac{1}{2}t+o(t) 412t =121t+o(t)

∴ \therefore 原式 = lim ⁡ t → 0 1 + t + o ( t ) − 1 + 1 2 t − o ( t ) t = lim ⁡ t → 0 3 2 t + o ( t ) t = 3 2 =\lim_{t\rightarrow 0}\frac{1+t+o(t)-1+\frac{1}{2}t-o(t)}{t}=\lim_{t\rightarrow 0}\frac{\frac{3}{2}t+o(t)}{t}=\frac{3}{2} =limt0t1+t+o(t)1+21to(t)=limt0t23t+o(t)=23


[学习资料]

1.《高等数学(第六版)》 ,同济大学数学系 编


感谢您的点赞、收藏和关注,更欢迎您的批评、指正和指导!

相关文章:

[高等数学学习记录] 泰勒公式

1 知识点 1.1 要求 为简化计算, 通常用多项式近似表达复杂函数: 设函数 f ( x ) f(x) f(x) 在含有 x 0 x_0 x0​ 的开区间内具有 ( n 1 ) (n1) (n1) 阶导数, 试找出一个关于 ( x − x 0 ) (x-x_0) (x−x0​) 的 n n n 次多项式 p n ( x ) p_n(x) pn​(x) 近似表达 f…...

我的创作纪念日—128天的坚持|分享|成长

&#x1f4ab;《博主介绍》&#xff1a;✨又是一天没白过&#xff0c;我是奈斯&#xff0c;DBA一名✨ &#x1f4ab;《擅长领域》&#xff1a;✌️擅长Oracle、MySQL、SQLserver、阿里云AnalyticDB for MySQL(分布式数据仓库)、Linux&#xff0c;也在扩展大数据方向的知识面✌️…...

万字长文解读深度学习——多模态模型BLIP2

&#x1f33a;历史文章列表&#x1f33a; 深度学习——优化算法、激活函数、归一化、正则化 深度学习——权重初始化、评估指标、梯度消失和梯度爆炸 深度学习——前向传播与反向传播、神经网络&#xff08;前馈神经网络与反馈神经网络&#xff09;、常见算法概要汇总 万字长…...

selinux与防火墙

selinux 什么是selinux SELinux 是 Security-Enhanced Linux 的缩写&#xff0c;意思是安全强化的 linux 。 SELinux 主要由美国国家安全局&#xff08; NSA &#xff09;开发&#xff0c;当初开发的目的是为了避免资源的误用。 系统资源都是通过程序进行访问的&#xff0…...

java基础概念47-ArrayList、LinkList和迭代器

一、ArrayList集合 1-1、ArrayList的两种添加信息的方式 1-2、ArrayList集合底层逻辑 1、利用空参创建的集合&#xff0c;在底层创建一个默认长度为0的数组 2、添加第一个元素时&#xff0c;底层会创建一个新的长度为10的数组 3、存满时&#xff0c;会扩容1.5倍。 4、如果…...

Delphi 12.2.1 idhttpserver的使用方法

Delphi 12.2.1 idhttpserver的使用方法 1&#xff09;CommandGet(AContext: TIdContext; ARequestInfo: TIdHTTPRequestInfo; AResponseInfo: TIdHTTPResponseInfo);事件 该事件和IDTCPSERVER的EXECUTE()事件一样&#xff0c;都是“线程方法”&#xff0c;即事件是在子线程里…...

【golang】单元测试,以及出现undefined时的解决方案

单元测试 要对某一方法进行测试时&#xff0c;例如如下这一简单减法函数&#xff0c;选中函数名后右键->转到->测试 1&#xff09;Empty test file 就是一个空文件&#xff0c;我们可以自己写测试的逻辑 但是直接点绿色箭头运行会出问题&#xff1a; 找不到包。我们要在…...

jmeter 压测常用静默参数解释应用

简介&#xff1a; JMeter静默压测&#xff08;即无界面压测&#xff09;是一种常用的性能测试方法&#xff0c;用于模拟多个用户同时访问系统并测量系统的响应时间和吞吐量等关键性能指标。在JMeter静默压测中&#xff0c;常用的压测参数及其解释如下&#xff1a; 一、基本…...

【开源】A059-基于SpringBoot的社区养老服务系统的设计与实现

&#x1f64a;作者简介&#xff1a;在校研究生&#xff0c;拥有计算机专业的研究生开发团队&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的网站项目。 代码可以查看项目链接获取⬇️&#xff0c;记得注明来意哦~&#x1f339; 赠送计算机毕业设计600个选题ex…...

《智能体雏形开发(高阶实操)》开发计划概述

智能体雏形开发计划 通过本计划,逐步完成一个可以真实运行的智能体雏形。 最终完成一个**“用户日志文件生成日报,日报再进一步汇总成周报”**的任务驱动型智能体雏形 第一阶段:基础准备与环境搭建 1. 学习基础知识 了解智能体的概念、类型和技术框架。学习大模型(如阿里…...

QT学习笔记-QStringList,QTimer

QStringList-存储和管理一系列的字符串 在Qt框架中&#xff0c;QStringList 是一个模板类 QList<QString> 的特化&#xff0c;专门用于处理 QString 对象&#xff08;即Qt中的字符串&#xff09;的列表。当你看到这样的声明&#xff1a; QStringList m_rec_topicList; …...

如何使用brew安装phpredis扩展?

如何使用brew安装phpredis扩展&#xff1f; phpredis扩展是一个用于PHP语言的Redis客户端扩展&#xff0c;它提供了一组PHP函数&#xff0c;用于与Redis服务器进行交互。 1、cd到php某一版本的bin下 /usr/local/opt/php8.1/bin 2、下载 phpredis git clone https://githu…...

游戏引擎学习第25天

Git: https://gitee.com/mrxiao_com/2d_game 今天的计划 总结和复述&#xff1a; 这段时间的工作已经接近尾声&#xff0c;虽然每次编程的时间只有一个小时&#xff0c;但每一天的进展都带来不少收获。尽管看起来似乎花费了很多时间&#xff0c;实际上这些日积月累的时间并未…...

多线程运行时,JVM(Java虚拟机)的内存模型

在多线程运行时&#xff0c;JVM&#xff08;Java虚拟机&#xff09;的内存模型主要涉及以下几个方面&#xff1a; 1. 主内存和工作内存 JVM内存模型定义了主内存和工作内存的概念。主内存是所有线程共享的内存区域&#xff0c;而工作内存是每个线程私有的内存区域。线程对变量…...

kernel crash数据解析

crash数据解析 crash解析工具下载和编译方法如下&#xff1a; git clone https://github.com/crash-utility/crash.git cd crash; make targetARM64 crash工具解析ramdump文件&#xff1a; 1. 将dump 出来的ramdump 文件拷贝到 Linux 系统 2. 找到当前Linux 内核对应的vm…...

CLIP模型也能处理点云信息

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢&#xff0c;在这里我会分享我的知识和经验。&am…...

利用若依代码生成器实现课程管理模块开发

目录 前言1. 环境准备1.1 数据库表设计与导入 2. 使用若依代码生成器生成模块代码2.1 导入数据库表2.2 配置生成规则2.2.1 基本信息配置2.2.2 字段信息配置2.2.3 生成信息配置 3. 下载与集成生成代码3.1 解压与集成3.2 启动项目并验证 4. 优化与扩展4.1 前端优化4.2 后端扩展 结…...

用Python做数据分析环境搭建及工具使用(Jupyter)

目录 一、Anaconda下载、安装 二、Jupyter 打开 三、Jupyter 常用快捷键 3.1 创建控制台 3.2 命令行模式下的快捷键 3.3 运行模式下快捷键 3.4 代码模式和笔记模式 3.5 编写Python代码 一、Anaconda下载、安装 【最新最全】Anaconda安装python环境_anaconda配置python…...

SpringBoot实战(三十二)集成 ofdrw,实现 PDF 和 OFD 的转换、SM2 签署OFD

目录 一、OFD 简介1.1 什么是 OFD&#xff1f;1.2 什么是 版式文档&#xff1f;1.3 为什么要用 OFD 而不是PDF&#xff1f; 二、ofdrw 简介2.1 定义2.2 Maven 依赖2.3 ofdrw 的 13 个模块 三、PDF/文本/图片 转 OFD&#xff08;ofdrw-conterver&#xff09;3.1 介绍&#xff1a…...

linux环境人大金仓数据库修改密码

1.进入人大金仓安装目录 cd /home/opt/Kingbase/ES/V9/Server/bin2.连接数据库 ./ksql -U system -d mydb -h 127.0.0.1 -p 54321-u 用户名 -d 数据库名 -h ip地址 -p 端口号 3.修改密码 ALTER USER system WITH PASSWORD 密码;...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...