2022高等代数上【南昌大学】
2022 高等代数
- 证明: p ( x ) p(x) p(x) 是不可约多项式的充要条件是对任意的多项式 f ( x ) , g ( x ) f(x), g(x) f(x),g(x),若 p ( x ) ∣ f ( x ) g ( x ) p(x) \mid f(x)g(x) p(x)∣f(x)g(x),则有 p ( x ) ∣ f ( x ) p(x) \mid f(x) p(x)∣f(x) 或 p ( x ) ∣ g ( x ) p(x) \mid g(x) p(x)∣g(x)。
⇒ \Rightarrow ⇒
当 p ( x ) p(x) p(x) 是不可约多项式,且 p ( x ) ∣ f ( x ) g ( x ) p(x) \mid f(x)g(x) p(x)∣f(x)g(x) ,若 p ( x ) ∤ f ( x ) p(x) \nmid f(x) p(x)∤f(x),则两多项式互素,即 ( p ( x ) , f ( x ) ) = 1 (p(x),f(x))=1 (p(x),f(x))=1,于是 p ( x ) ∣ g ( x ) p(x) \mid g(x) p(x)∣g(x)
⇐ \Leftarrow ⇐
若 p ( x ) p(x) p(x) 可约,设 p ( x ) = p 1 ( x ) p 2 ( x ) p(x)=p_1(x)p_2(x) p(x)=p1(x)p2(x) , ∂ ( p i ( x ) ) = deg p i ( x ) < deg p ( x ) = ∂ ( p ( x ) ) ( i = 1 , 2 ) \partial \left( p_i(x) \right) = \deg p_i(x) < \deg p(x) = \partial \left( p(x) \right)\,(i=1,2) ∂(pi(x))=degpi(x)<degp(x)=∂(p(x))(i=1,2) , p ( x ) ∣ p 1 ( x ) p 2 ( x ) p(x) \mid p_1(x)p_2(x) p(x)∣p1(x)p2(x) ,但 p ( x ) ∤ p 1 ( x ) p(x) \nmid p_1(x) p(x)∤p1(x), p ( x ) ∤ p 2 ( x ) p(x) \nmid p_2(x) p(x)∤p2(x)
- 计算行列式
∣ 2 n − 2 2 n − 1 − 2 ⋯ 2 3 − 2 2 2 − 2 3 n − 3 3 n − 1 − 3 ⋯ 3 3 − 3 3 2 − 3 ⋮ ⋮ ⋱ ⋮ ⋮ n n − n n n − 1 − n ⋯ n 3 − n n 2 − n ∣ . \begin{vmatrix} 2^n - 2 & 2^{n-1} - 2 & \cdots & 2^3 - 2 & 2^2 - 2 \\ 3^n - 3 & 3^{n-1} - 3 & \cdots & 3^3 - 3 & 3^2 - 3 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ n^n - n & n^{n-1} - n & \cdots & n^3 - n & n^2 - n \\ \end{vmatrix}. 2n−23n−3⋮nn−n2n−1−23n−1−3⋮nn−1−n⋯⋯⋱⋯23−233−3⋮n3−n22−232−3⋮n2−n .
法 1
∣ 2 n − 2 2 n − 1 − 2 ⋯ 2 2 − 2 3 n − 3 3 n − 1 − 3 ⋯ 3 2 − 3 ⋮ ⋮ ⋱ ⋮ n n − n n n − 1 − n ⋯ n 2 − n ∣ = ∣ 2 n − 1 ( 2 − 1 ) 2 n − 2 ( 2 − 1 ) ⋯ 2 ( 2 − 1 ) 3 n − 1 ( 3 − 1 ) 3 n − 2 ( 3 − 1 ) ⋯ 3 ( 3 − 1 ) ⋮ ⋮ ⋱ ⋮ n n − 1 ( n − 1 ) n n − 2 ( n − 1 ) ⋯ n ( n − 1 ) ∣ = ( n − 1 ) ! ∣ 2 n − 1 2 n − 2 ⋯ 2 3 n − 1 3 n − 2 ⋯ 3 ⋮ ⋮ ⋱ ⋮ n n − 1 n n − 2 ⋯ n ∣ = n ! ( n − 1 ) ! ∣ 2 n − 2 2 n − 3 ⋯ 1 3 n − 2 3 n − 3 ⋯ 1 ⋮ ⋮ ⋱ ⋮ n n − 2 n n − 3 ⋯ 1 ∣ = n ! ( n − 1 ) ! ( − 1 ) ( n − 1 ) ( n − 2 ) 2 ∏ 2 ≤ j < i ≤ n ( i − j ) = ( − 1 ) ( n − 1 ) ( n − 2 ) 2 ∏ k = 1 n k ! \begin{align*} \left| \begin{array}{cccc} {2^n - 2} & {2^{n - 1} - 2} & \cdots & {2^2 - 2} \\ {3^n - 3} & {3^{n - 1} - 3} & \cdots & {3^2 - 3} \\ \vdots & \vdots & \ddots & \vdots \\ {n^n - n} & {n^{n - 1} - n} & \cdots & {n^2 - n} \end{array} \right| &= \left| \begin{array}{cccc} {2^{n - 1} (2 - 1)} & {2^{n - 2} (2 - 1)} & \cdots & {2 (2 - 1)} \\ {3^{n - 1} (3 - 1)} & {3^{n - 2} (3 - 1)} & \cdots & {3 (3 - 1)} \\ \vdots & \vdots & \ddots & \vdots \\ {n^{n - 1} (n - 1)} & {n^{n - 2} (n - 1)} & \cdots & {n (n - 1)} \end{array} \right| \\ &= (n - 1)! \left| \begin{array}{cccc} {2^{n - 1}} & {2^{n - 2}} & \cdots & 2 \\ {3^{n - 1}} & {3^{n - 2}} & \cdots & 3 \\ \vdots & \vdots & \ddots & \vdots \\ {n^{n - 1}} & {n^{n - 2}} & \cdots & n \end{array} \right| \\ &= n! (n - 1)! \left| \begin{array}{cccc} {2^{n - 2}} & {2^{n - 3}} & \cdots & 1 \\ {3^{n - 2}} & {3^{n - 3}} & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ {n^{n - 2}} & {n^{n - 3}} & \cdots & 1 \end{array} \right| \\ &= n! (n - 1)! \left( -1 \right)^{\frac{(n - 1)(n - 2)}{2}} \prod_{2 \le j < i \le n} (i - j) \\ &= \left( -1 \right)^{\frac{(n - 1)(n - 2)}{2}} \prod_{k = 1}^n k! \end{align*} 2n−23n−3⋮nn−n2n−1−23n−1−3⋮nn−1−n⋯⋯⋱⋯22−232−3⋮n2−n = 2n−1(2−1)3n−1(3−1)⋮nn−1(n−1)2n−2(2−1)3n−2(3−1)⋮nn−2(n−1)⋯⋯⋱⋯2(2−1)3(3−1)⋮n(n−1) =(n−1)! 2n−13n−1⋮nn−12n−23n−2⋮nn−2⋯⋯⋱⋯23⋮n =n!(n−1)! 2n−23n−2⋮nn−22n−33n−3⋮nn−3⋯⋯⋱⋯11⋮1 =n!(n−1)!(−1)2(n−1)(n−2)2≤j<i≤n∏(i−j)=(−1)2(n−1)(n−2)k=1∏nk!
法 2
∣ 2 n − 2 2 n − 1 − 2 ⋯ 2 3 − 2 2 2 − 2 3 n − 3 3 n − 1 − 3 ⋯ 3 3 − 3 3 2 − 3 ⋮ ⋮ ⋱ ⋮ ⋮ n n − n n n − 1 − n ⋯ n 3 − n n 2 − n ∣ = ∣ 1 1 1 ⋯ 1 1 0 2 n − 2 2 n − 1 − 2 ⋯ 2 3 − 2 2 2 − 2 0 3 n − 3 3 n − 1 − 3 ⋯ 3 3 − 3 3 2 − 3 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 n n − n n n − 1 − n ⋯ n 3 − n n 2 − n ∣ = n ! ∣ 1 1 1 ⋯ 1 1 1 2 n − 1 2 n − 2 ⋯ 2 2 2 1 3 n − 1 3 n − 2 ⋯ 3 2 3 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 1 n n − 1 n n − 2 ⋯ n 2 n ∣ = n ! ( − 1 ) ( n − 1 ) ( n − 2 ) 2 ∣ 1 1 1 ⋯ 1 1 1 2 2 2 ⋯ 2 n − 2 2 n − 1 1 3 3 2 ⋯ 3 n − 2 3 n − 1 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 1 n n 2 ⋯ n n − 2 n n − 1 ∣ = ( − 1 ) ( n − 1 ) ( n − 2 ) 2 ∏ k = 1 n k ! \begin{align*} \left| \begin{array}{ccccc} {2^n - 2} & {2^{n - 1} - 2} & \cdots & {2^3 - 2} & {2^2 - 2} \\ {3^n - 3} & {3^{n - 1} - 3} & \cdots & {3^3 - 3} & {3^2 - 3} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ {n^n - n} & {n^{n - 1} - n} & \cdots & {n^3 - n} & {n^2 - n} \end{array} \right| &= \left| \begin{array}{cccccc} 1 & 1 & 1 & \cdots & 1 & 1 \\ 0 & {2^n - 2} & {2^{n - 1} - 2} & \cdots & {2^3 - 2} & {2^2 - 2} \\ 0 & {3^n - 3} & {3^{n - 1} - 3} & \cdots & {3^3 - 3} & {3^2 - 3} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & {n^n - n} & {n^{n - 1} - n} & \cdots & {n^3 - n} & {n^2 - n} \end{array} \right| \\ &= n! \left| \begin{array}{cccccc} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & {2^{n - 1}} & {2^{n - 2}} & \cdots & {2^2} & 2 \\ 1 & {3^{n - 1}} & {3^{n - 2}} & \cdots & {3^2} & 3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & {n^{n - 1}} & {n^{n - 2}} & \cdots & {n^2} & n \end{array} \right| \\ &= n! \left( -1 \right)^{\frac{(n - 1)(n - 2)}{2}} \left| \begin{array}{cccccc} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 2 & {2^2} & \cdots & {2^{n - 2}} & {2^{n - 1}} \\ 1 & 3 & {3^2} & \cdots & {3^{n - 2}} & {3^{n - 1}} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & n & {n^2} & \cdots & {n^{n - 2}} & {n^{n - 1}} \end{array} \right| \\ &= \left( -1 \right)^{\frac{(n - 1)(n - 2)}{2}} \prod_{k = 1}^n k! \end{align*}
相关文章:

2022高等代数上【南昌大学】
2022 高等代数 证明: p ( x ) p(x) p(x) 是不可约多项式的充要条件是对任意的多项式 f ( x ) , g ( x ) f(x), g(x) f(x),g(x),若 p ( x ) ∣ f ( x ) g ( x ) p(x) \mid f(x)g(x) p(x)∣f(x)g(x),则有 p ( x ) ∣ f ( x ) p(x) \mid f(x) p(x)∣f(x) 或 p ( x ) ∣ g (…...

文本生成类(机器翻译)系统评估
在机器翻译任务中常用评价指标:BLEU、ROGUE、METEOR、PPL。 这些指标的缺点:只能反应模型输出是否类似于测试文本。 BLUE(Bilingual Evaluation Understudy):是用于评估模型生成的句子(candidate)和实际句子(referen…...

11.7【miniob】【debug】
这里的vector是实际值,而relation是指针,所以要解引用,*$1,并在最后调用其析构函数 emplace_back 和 push_back 都是用于在容器(如 std::vector)的末尾添加元素的方法,但它们的工作方式有所不同…...

OSHI 介绍与使用
OSHI 介绍 OSHI(Operating System and Hardware Information)是一个开源的Java库,用于从操作系统和硬件层面获取系统资源的详细信息。它提供了对操作系统、硬件、CPU、内存、磁盘、网络接口等多种信息的访问,且不依赖于平台特定的…...

Hadoop生态圈框架部署(八)- Hadoop高可用(HA)集群部署
文章目录 前言一、部署规划二、Hadoop HA集群部署(手动部署)1. 下载hadoop2. 上传安装包2. 解压hadoop安装包3. 配置hadoop配置文件3.1 虚拟机hadoop1修改hadoop配置文件3.1.1 修改 hadoop-env.sh 配置文件3.3.2 修改 core-site.xml 配置文件3.3.3 修改 …...

【RocketMQ】Name Server 无状态特点及如何让 Broker Consumer Producer 感知新节点
文章目录 前言1. Name Server 无状态特点2. Name Server 地址服务3. Name Server 手动配置后记 前言 看了 《RocketMQ 消息中间件实战派(上册)》前面一点,书中代码太多容易陷入细节。 这里简单描述下 RocketMQ Name Server 无状态表现在什么…...

蓝牙定位的MATLAB程序,四个锚点、三维空间
这段代码通过RSSI信号强度实现了在三维空间中的蓝牙定位,展示了如何使用锚点位置和测量的信号强度来估计未知点的位置。代码涉及信号衰减模型、距离计算和最小二乘法估计等基本概念,并通过三维可视化展示了真实位置与估计位置的关系。 目录 程序描述 运…...

机器学习--绪论
开启这一系列文章的初衷,是希望搭建一座通向机器学习世界的桥梁,为有志于探索这一领域的读者提供系统性指引和实践经验分享。随着人工智能和大数据技术的迅猛发展,机器学习已成为推动技术创新和社会变革的重要驱动力。从智能推荐系统到自然语…...

Unity 设计模式-命令模式(Command Pattern)详解
命令模式(Command Pattern)是一种行为型设计模式,它将请求封装成对象,从而使得可以使用不同的请求、队列或日志请求,以及支持可撤销的操作。命令模式通常包含四个主要角色:命令(Command…...

线程信号量 Linux环境 C语言实现
既可以解决多个同类共享资源的互斥问题,也可以解决简易的同步问题 头文件:#include <semaphore.h> 类型:sem_t 初始化:int sem_init(sem_t *sem, int pshared, unsigned int value); //程序中第一次对指定信号量调用p、v操…...

karmada-descheduler
descheduler规则 karmada-descheduler 定期检测所有部署,通常是每2分钟一次,并确定目标调度集群中无法调度的副本数量。它通过调用 karmada-scheduler-estimator 来完成这个过程。如果发现无法调度的副本,它将通过减少 spec.clusters 的配…...

【热门主题】000075 探索嵌入式硬件设计的奥秘
前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 【热…...

Android okhttp请求
下面是一个用 OkHttp 封装的 GET 请求方法,适用于 Android 项目。该方法包括基本的网络请求、错误处理,并支持通过回调返回结果。 封装 GET 请求的工具类 添加依赖 在你的 build.gradle 文件中,确保添加了 OkHttp 的依赖: imple…...

嵌入式蓝桥杯学习4 lcd移植
cubemx配置 复制前面配置过的文件 打开cubemx,将PB8,PB9配置为GPIO-Output。 点击GENERATE CODE. 文件移植 1.打开比赛提供的文件包,点击Inc文件夹 2.点击Inc文件夹。复制fonts.h和lcd.h,粘贴到我们自己的工程文件夹的bsp中(…...

电子应用设计方案-38:智能语音系统方案设计
智能语音系统方案设计 一、引言 智能语音系统作为一种便捷、自然的人机交互方式,正逐渐在各个领域得到广泛应用。本方案旨在设计一个高效、准确、功能丰富的智能语音系统。 二、系统概述 1. 系统目标 - 实现高准确率的语音识别和自然流畅的语音合成。 - 支持多种语…...

渗透测试:网络安全的深度探索
一、引言 在当今数字化时代,网络安全问题日益凸显。企业和组织面临着来自各种恶意攻击者的威胁,他们试图窃取敏感信息、破坏系统或进行其他恶意活动。渗透测试作为一种主动的安全评估方法,能够帮助企业发现潜在的安全漏洞,提高网…...

基于SpringBoot的“小区物业管理系统”的设计与实现(源码+数据库+文档+PPT)
基于SpringBoot的“小区物业管理系统”的设计与实现(源码数据库文档PPT) 开发语言:Java 数据库:MySQL 技术:SpringBoot 工具:IDEA/Ecilpse、Navicat、Maven 系统展示 系统功能结构图 个人信息界面图 费用信息管理…...

调试android 指纹遇到的坑
Android8以后版本 一、指纹服务不能自动 指纹服务fingerprintd(biometrics fingerprintservice),可以手动起来,但是在init.rc中无法启动。 解决办法: 1.抓取开机时kernel log ,确认我们的启动指纹服务的init.rc 文件有被init.c…...
剑指offer(专项突破)---字符串
总目录:剑指offer(专项突破)---目录-CSDN博客 1.字符串的基本知识 C语言中: 函数名功能描述strcpy(s1, s2)将字符串s2复制到字符串s1中,包括结束符\0,要求s1有足够空间容纳s2的内容。strncpy(s1, s2, n)…...

【springboot】 多数据源实现
文章目录 1. 引言:多数据源的必要性和应用场景**为什么需要多数据源?****应用场景** 2. Spring Boot中的数据源配置2.1 默认数据源配置简介2.2 如何在Spring Boot中配置多个数据源 3. 整合MyBatis与多数据源**配置MyBatis使用多数据源****Mapper接口的数…...

多模态COGMEN详解
✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨ 🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢,在这里我会分享我的知识和经验。&am…...

django 实战(python 3.x/django 3/sqlite)
要在 Python 3.x 环境中使用 Django 3.2 和 SQLite 创建一个新的 Django 项目,你可以按照以下步骤进行操作。这些步骤假设你已经安装了 Python 3.x 和 pip。 1. 设置虚拟环境 首先,建议为你的 Django 项目创建一个虚拟环境,以便隔离项目的依…...

图数据库 | 12、图数据库架构设计——高性能计算架构
在传统类型的数据库架构设计中,通常不会单独介绍计算架构,一切都围绕存储引擎展开,毕竟存储架构是基础,尤其是在传统的基于磁盘存储的数据库架构设计中。 类似地,在图数据库架构设计中,项目就围绕存储的方…...

Unity 利用Button 组件辅助Scroll View 滚动
实现 创建枚举类ScrollDir 以区分滚动方向。每组两个按钮负责同方向上左右/上下滚动。 Update 中实时获取Scroll View 滚动条当前位置。 if (dir.Equals(ScrollDir.vertical)) {posCurrent scroll.verticalNormalizedPosition; } else if (dir.Equals(ScrollDir.horizontal)…...

Ubuntu 安装Ansible ansible.cfg配置文件生成
安装后的ansible.cfg后的默认内容如下: rootlocalhost:/etc/ansible# cat ansible.cfg # Since Ansible 2.12 (core): # To generate an example config file (a "disabled" one with all default settings, commented out): # $ ansible-…...

使用PaddlePaddle实现线性回归模型
目录 编辑 引言 PaddlePaddle简介 线性回归模型的构建 1. 准备数据 2. 定义模型 3. 准备数据加载器 4. 定义损失函数和优化器 5. 训练模型 6. 评估模型 7. 预测 结论 引言 线性回归是统计学和机器学习中一个经典的算法,用于预测一个因变量࿰…...

MongoDB集群的介绍与搭建
MongoDB集群的介绍与搭建 一.MongoDB集群的介绍 注意:Mongodb是一个比较流行的NoSQL数据库,它的存储方式是文档式存储,并不是Key-Value形式; 1.1集群的优势和特性 MongoDB集群的优势主要体现在以下几个方面: (1)高…...

PhpStorm配置Laravel
本文是2024最新的通过phpstorm创建laravel项目 1.下载phpstorm 2.检查本电脑的环境phpcomposer 显示图标就是安装成功了,不会安装的百度自行安装 3.安装完后,自行创建一个空目录不要有中文,然后运行cmd 输入以下命令,即可创建…...

Solving the Makefile Missing Separator Stop Error in VSCode
1. 打开 Makefile 并转换缩进 步骤 1: 在 VSCode 中打开 Makefile 打开 VSCode。使用文件浏览器或 Ctrl O(在 Mac 上是 Cmd O)打开你的 Makefile。 步骤 2: 打开命令面板 按 Ctrl Shift P(在 Mac 上是 Cmd Shift P)&…...

MySQL大小写敏感、MySQL设置字段大小写敏感
文章目录 一、MySQL大小写敏感规则二、设置数据库及表名大小写敏感 2.1、查询库名及表名是否大小写敏感2.2、修改库名及表名大小写敏感 三、MySQL列名大小写不敏感四、lower_case_table_name与校对规则 4.1、验证校对规则影响大小写敏感4.1、验证校对规则影响排序 五、设置字段…...