2022高等代数上【南昌大学】
2022 高等代数
- 证明: p ( x ) p(x) p(x) 是不可约多项式的充要条件是对任意的多项式 f ( x ) , g ( x ) f(x), g(x) f(x),g(x),若 p ( x ) ∣ f ( x ) g ( x ) p(x) \mid f(x)g(x) p(x)∣f(x)g(x),则有 p ( x ) ∣ f ( x ) p(x) \mid f(x) p(x)∣f(x) 或 p ( x ) ∣ g ( x ) p(x) \mid g(x) p(x)∣g(x)。
⇒ \Rightarrow ⇒
当 p ( x ) p(x) p(x) 是不可约多项式,且 p ( x ) ∣ f ( x ) g ( x ) p(x) \mid f(x)g(x) p(x)∣f(x)g(x) ,若 p ( x ) ∤ f ( x ) p(x) \nmid f(x) p(x)∤f(x),则两多项式互素,即 ( p ( x ) , f ( x ) ) = 1 (p(x),f(x))=1 (p(x),f(x))=1,于是 p ( x ) ∣ g ( x ) p(x) \mid g(x) p(x)∣g(x)
⇐ \Leftarrow ⇐
若 p ( x ) p(x) p(x) 可约,设 p ( x ) = p 1 ( x ) p 2 ( x ) p(x)=p_1(x)p_2(x) p(x)=p1(x)p2(x) , ∂ ( p i ( x ) ) = deg p i ( x ) < deg p ( x ) = ∂ ( p ( x ) ) ( i = 1 , 2 ) \partial \left( p_i(x) \right) = \deg p_i(x) < \deg p(x) = \partial \left( p(x) \right)\,(i=1,2) ∂(pi(x))=degpi(x)<degp(x)=∂(p(x))(i=1,2) , p ( x ) ∣ p 1 ( x ) p 2 ( x ) p(x) \mid p_1(x)p_2(x) p(x)∣p1(x)p2(x) ,但 p ( x ) ∤ p 1 ( x ) p(x) \nmid p_1(x) p(x)∤p1(x), p ( x ) ∤ p 2 ( x ) p(x) \nmid p_2(x) p(x)∤p2(x)
- 计算行列式
∣ 2 n − 2 2 n − 1 − 2 ⋯ 2 3 − 2 2 2 − 2 3 n − 3 3 n − 1 − 3 ⋯ 3 3 − 3 3 2 − 3 ⋮ ⋮ ⋱ ⋮ ⋮ n n − n n n − 1 − n ⋯ n 3 − n n 2 − n ∣ . \begin{vmatrix} 2^n - 2 & 2^{n-1} - 2 & \cdots & 2^3 - 2 & 2^2 - 2 \\ 3^n - 3 & 3^{n-1} - 3 & \cdots & 3^3 - 3 & 3^2 - 3 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ n^n - n & n^{n-1} - n & \cdots & n^3 - n & n^2 - n \\ \end{vmatrix}. 2n−23n−3⋮nn−n2n−1−23n−1−3⋮nn−1−n⋯⋯⋱⋯23−233−3⋮n3−n22−232−3⋮n2−n .
法 1
∣ 2 n − 2 2 n − 1 − 2 ⋯ 2 2 − 2 3 n − 3 3 n − 1 − 3 ⋯ 3 2 − 3 ⋮ ⋮ ⋱ ⋮ n n − n n n − 1 − n ⋯ n 2 − n ∣ = ∣ 2 n − 1 ( 2 − 1 ) 2 n − 2 ( 2 − 1 ) ⋯ 2 ( 2 − 1 ) 3 n − 1 ( 3 − 1 ) 3 n − 2 ( 3 − 1 ) ⋯ 3 ( 3 − 1 ) ⋮ ⋮ ⋱ ⋮ n n − 1 ( n − 1 ) n n − 2 ( n − 1 ) ⋯ n ( n − 1 ) ∣ = ( n − 1 ) ! ∣ 2 n − 1 2 n − 2 ⋯ 2 3 n − 1 3 n − 2 ⋯ 3 ⋮ ⋮ ⋱ ⋮ n n − 1 n n − 2 ⋯ n ∣ = n ! ( n − 1 ) ! ∣ 2 n − 2 2 n − 3 ⋯ 1 3 n − 2 3 n − 3 ⋯ 1 ⋮ ⋮ ⋱ ⋮ n n − 2 n n − 3 ⋯ 1 ∣ = n ! ( n − 1 ) ! ( − 1 ) ( n − 1 ) ( n − 2 ) 2 ∏ 2 ≤ j < i ≤ n ( i − j ) = ( − 1 ) ( n − 1 ) ( n − 2 ) 2 ∏ k = 1 n k ! \begin{align*} \left| \begin{array}{cccc} {2^n - 2} & {2^{n - 1} - 2} & \cdots & {2^2 - 2} \\ {3^n - 3} & {3^{n - 1} - 3} & \cdots & {3^2 - 3} \\ \vdots & \vdots & \ddots & \vdots \\ {n^n - n} & {n^{n - 1} - n} & \cdots & {n^2 - n} \end{array} \right| &= \left| \begin{array}{cccc} {2^{n - 1} (2 - 1)} & {2^{n - 2} (2 - 1)} & \cdots & {2 (2 - 1)} \\ {3^{n - 1} (3 - 1)} & {3^{n - 2} (3 - 1)} & \cdots & {3 (3 - 1)} \\ \vdots & \vdots & \ddots & \vdots \\ {n^{n - 1} (n - 1)} & {n^{n - 2} (n - 1)} & \cdots & {n (n - 1)} \end{array} \right| \\ &= (n - 1)! \left| \begin{array}{cccc} {2^{n - 1}} & {2^{n - 2}} & \cdots & 2 \\ {3^{n - 1}} & {3^{n - 2}} & \cdots & 3 \\ \vdots & \vdots & \ddots & \vdots \\ {n^{n - 1}} & {n^{n - 2}} & \cdots & n \end{array} \right| \\ &= n! (n - 1)! \left| \begin{array}{cccc} {2^{n - 2}} & {2^{n - 3}} & \cdots & 1 \\ {3^{n - 2}} & {3^{n - 3}} & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ {n^{n - 2}} & {n^{n - 3}} & \cdots & 1 \end{array} \right| \\ &= n! (n - 1)! \left( -1 \right)^{\frac{(n - 1)(n - 2)}{2}} \prod_{2 \le j < i \le n} (i - j) \\ &= \left( -1 \right)^{\frac{(n - 1)(n - 2)}{2}} \prod_{k = 1}^n k! \end{align*} 2n−23n−3⋮nn−n2n−1−23n−1−3⋮nn−1−n⋯⋯⋱⋯22−232−3⋮n2−n = 2n−1(2−1)3n−1(3−1)⋮nn−1(n−1)2n−2(2−1)3n−2(3−1)⋮nn−2(n−1)⋯⋯⋱⋯2(2−1)3(3−1)⋮n(n−1) =(n−1)! 2n−13n−1⋮nn−12n−23n−2⋮nn−2⋯⋯⋱⋯23⋮n =n!(n−1)! 2n−23n−2⋮nn−22n−33n−3⋮nn−3⋯⋯⋱⋯11⋮1 =n!(n−1)!(−1)2(n−1)(n−2)2≤j<i≤n∏(i−j)=(−1)2(n−1)(n−2)k=1∏nk!
法 2
∣ 2 n − 2 2 n − 1 − 2 ⋯ 2 3 − 2 2 2 − 2 3 n − 3 3 n − 1 − 3 ⋯ 3 3 − 3 3 2 − 3 ⋮ ⋮ ⋱ ⋮ ⋮ n n − n n n − 1 − n ⋯ n 3 − n n 2 − n ∣ = ∣ 1 1 1 ⋯ 1 1 0 2 n − 2 2 n − 1 − 2 ⋯ 2 3 − 2 2 2 − 2 0 3 n − 3 3 n − 1 − 3 ⋯ 3 3 − 3 3 2 − 3 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 n n − n n n − 1 − n ⋯ n 3 − n n 2 − n ∣ = n ! ∣ 1 1 1 ⋯ 1 1 1 2 n − 1 2 n − 2 ⋯ 2 2 2 1 3 n − 1 3 n − 2 ⋯ 3 2 3 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 1 n n − 1 n n − 2 ⋯ n 2 n ∣ = n ! ( − 1 ) ( n − 1 ) ( n − 2 ) 2 ∣ 1 1 1 ⋯ 1 1 1 2 2 2 ⋯ 2 n − 2 2 n − 1 1 3 3 2 ⋯ 3 n − 2 3 n − 1 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 1 n n 2 ⋯ n n − 2 n n − 1 ∣ = ( − 1 ) ( n − 1 ) ( n − 2 ) 2 ∏ k = 1 n k ! \begin{align*} \left| \begin{array}{ccccc} {2^n - 2} & {2^{n - 1} - 2} & \cdots & {2^3 - 2} & {2^2 - 2} \\ {3^n - 3} & {3^{n - 1} - 3} & \cdots & {3^3 - 3} & {3^2 - 3} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ {n^n - n} & {n^{n - 1} - n} & \cdots & {n^3 - n} & {n^2 - n} \end{array} \right| &= \left| \begin{array}{cccccc} 1 & 1 & 1 & \cdots & 1 & 1 \\ 0 & {2^n - 2} & {2^{n - 1} - 2} & \cdots & {2^3 - 2} & {2^2 - 2} \\ 0 & {3^n - 3} & {3^{n - 1} - 3} & \cdots & {3^3 - 3} & {3^2 - 3} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & {n^n - n} & {n^{n - 1} - n} & \cdots & {n^3 - n} & {n^2 - n} \end{array} \right| \\ &= n! \left| \begin{array}{cccccc} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & {2^{n - 1}} & {2^{n - 2}} & \cdots & {2^2} & 2 \\ 1 & {3^{n - 1}} & {3^{n - 2}} & \cdots & {3^2} & 3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & {n^{n - 1}} & {n^{n - 2}} & \cdots & {n^2} & n \end{array} \right| \\ &= n! \left( -1 \right)^{\frac{(n - 1)(n - 2)}{2}} \left| \begin{array}{cccccc} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 2 & {2^2} & \cdots & {2^{n - 2}} & {2^{n - 1}} \\ 1 & 3 & {3^2} & \cdots & {3^{n - 2}} & {3^{n - 1}} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & n & {n^2} & \cdots & {n^{n - 2}} & {n^{n - 1}} \end{array} \right| \\ &= \left( -1 \right)^{\frac{(n - 1)(n - 2)}{2}} \prod_{k = 1}^n k! \end{align*}
相关文章:
2022高等代数上【南昌大学】
2022 高等代数 证明: p ( x ) p(x) p(x) 是不可约多项式的充要条件是对任意的多项式 f ( x ) , g ( x ) f(x), g(x) f(x),g(x),若 p ( x ) ∣ f ( x ) g ( x ) p(x) \mid f(x)g(x) p(x)∣f(x)g(x),则有 p ( x ) ∣ f ( x ) p(x) \mid f(x) p(x)∣f(x) 或 p ( x ) ∣ g (…...

文本生成类(机器翻译)系统评估
在机器翻译任务中常用评价指标:BLEU、ROGUE、METEOR、PPL。 这些指标的缺点:只能反应模型输出是否类似于测试文本。 BLUE(Bilingual Evaluation Understudy):是用于评估模型生成的句子(candidate)和实际句子(referen…...

11.7【miniob】【debug】
这里的vector是实际值,而relation是指针,所以要解引用,*$1,并在最后调用其析构函数 emplace_back 和 push_back 都是用于在容器(如 std::vector)的末尾添加元素的方法,但它们的工作方式有所不同…...
OSHI 介绍与使用
OSHI 介绍 OSHI(Operating System and Hardware Information)是一个开源的Java库,用于从操作系统和硬件层面获取系统资源的详细信息。它提供了对操作系统、硬件、CPU、内存、磁盘、网络接口等多种信息的访问,且不依赖于平台特定的…...

Hadoop生态圈框架部署(八)- Hadoop高可用(HA)集群部署
文章目录 前言一、部署规划二、Hadoop HA集群部署(手动部署)1. 下载hadoop2. 上传安装包2. 解压hadoop安装包3. 配置hadoop配置文件3.1 虚拟机hadoop1修改hadoop配置文件3.1.1 修改 hadoop-env.sh 配置文件3.3.2 修改 core-site.xml 配置文件3.3.3 修改 …...

【RocketMQ】Name Server 无状态特点及如何让 Broker Consumer Producer 感知新节点
文章目录 前言1. Name Server 无状态特点2. Name Server 地址服务3. Name Server 手动配置后记 前言 看了 《RocketMQ 消息中间件实战派(上册)》前面一点,书中代码太多容易陷入细节。 这里简单描述下 RocketMQ Name Server 无状态表现在什么…...

蓝牙定位的MATLAB程序,四个锚点、三维空间
这段代码通过RSSI信号强度实现了在三维空间中的蓝牙定位,展示了如何使用锚点位置和测量的信号强度来估计未知点的位置。代码涉及信号衰减模型、距离计算和最小二乘法估计等基本概念,并通过三维可视化展示了真实位置与估计位置的关系。 目录 程序描述 运…...

机器学习--绪论
开启这一系列文章的初衷,是希望搭建一座通向机器学习世界的桥梁,为有志于探索这一领域的读者提供系统性指引和实践经验分享。随着人工智能和大数据技术的迅猛发展,机器学习已成为推动技术创新和社会变革的重要驱动力。从智能推荐系统到自然语…...
Unity 设计模式-命令模式(Command Pattern)详解
命令模式(Command Pattern)是一种行为型设计模式,它将请求封装成对象,从而使得可以使用不同的请求、队列或日志请求,以及支持可撤销的操作。命令模式通常包含四个主要角色:命令(Command…...

线程信号量 Linux环境 C语言实现
既可以解决多个同类共享资源的互斥问题,也可以解决简易的同步问题 头文件:#include <semaphore.h> 类型:sem_t 初始化:int sem_init(sem_t *sem, int pshared, unsigned int value); //程序中第一次对指定信号量调用p、v操…...

karmada-descheduler
descheduler规则 karmada-descheduler 定期检测所有部署,通常是每2分钟一次,并确定目标调度集群中无法调度的副本数量。它通过调用 karmada-scheduler-estimator 来完成这个过程。如果发现无法调度的副本,它将通过减少 spec.clusters 的配…...

【热门主题】000075 探索嵌入式硬件设计的奥秘
前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 【热…...
Android okhttp请求
下面是一个用 OkHttp 封装的 GET 请求方法,适用于 Android 项目。该方法包括基本的网络请求、错误处理,并支持通过回调返回结果。 封装 GET 请求的工具类 添加依赖 在你的 build.gradle 文件中,确保添加了 OkHttp 的依赖: imple…...

嵌入式蓝桥杯学习4 lcd移植
cubemx配置 复制前面配置过的文件 打开cubemx,将PB8,PB9配置为GPIO-Output。 点击GENERATE CODE. 文件移植 1.打开比赛提供的文件包,点击Inc文件夹 2.点击Inc文件夹。复制fonts.h和lcd.h,粘贴到我们自己的工程文件夹的bsp中(…...

电子应用设计方案-38:智能语音系统方案设计
智能语音系统方案设计 一、引言 智能语音系统作为一种便捷、自然的人机交互方式,正逐渐在各个领域得到广泛应用。本方案旨在设计一个高效、准确、功能丰富的智能语音系统。 二、系统概述 1. 系统目标 - 实现高准确率的语音识别和自然流畅的语音合成。 - 支持多种语…...
渗透测试:网络安全的深度探索
一、引言 在当今数字化时代,网络安全问题日益凸显。企业和组织面临着来自各种恶意攻击者的威胁,他们试图窃取敏感信息、破坏系统或进行其他恶意活动。渗透测试作为一种主动的安全评估方法,能够帮助企业发现潜在的安全漏洞,提高网…...

基于SpringBoot的“小区物业管理系统”的设计与实现(源码+数据库+文档+PPT)
基于SpringBoot的“小区物业管理系统”的设计与实现(源码数据库文档PPT) 开发语言:Java 数据库:MySQL 技术:SpringBoot 工具:IDEA/Ecilpse、Navicat、Maven 系统展示 系统功能结构图 个人信息界面图 费用信息管理…...

调试android 指纹遇到的坑
Android8以后版本 一、指纹服务不能自动 指纹服务fingerprintd(biometrics fingerprintservice),可以手动起来,但是在init.rc中无法启动。 解决办法: 1.抓取开机时kernel log ,确认我们的启动指纹服务的init.rc 文件有被init.c…...
剑指offer(专项突破)---字符串
总目录:剑指offer(专项突破)---目录-CSDN博客 1.字符串的基本知识 C语言中: 函数名功能描述strcpy(s1, s2)将字符串s2复制到字符串s1中,包括结束符\0,要求s1有足够空间容纳s2的内容。strncpy(s1, s2, n)…...
【springboot】 多数据源实现
文章目录 1. 引言:多数据源的必要性和应用场景**为什么需要多数据源?****应用场景** 2. Spring Boot中的数据源配置2.1 默认数据源配置简介2.2 如何在Spring Boot中配置多个数据源 3. 整合MyBatis与多数据源**配置MyBatis使用多数据源****Mapper接口的数…...

网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...
DAY 26 函数专题1
函数定义与参数知识点回顾:1. 函数的定义2. 变量作用域:局部变量和全局变量3. 函数的参数类型:位置参数、默认参数、不定参数4. 传递参数的手段:关键词参数5 题目1:计算圆的面积 任务: 编写一…...