神经网络入门实战:(十四)pytorch 官网内置的 CIFAR10 数据集,及其网络模型
(一) pytorch 官网内置的网络模型
图像处理:
Models and pre-trained weights — Torchvision 0.20 documentation
(二) CIFAR10数据集的分类网络模型(仅前向传播):
下方的网络模型图片有误,已做修改,具体情参考代码。

1)代码如下:
无 Sequential() 函数的 demo :
Sequential() 函数可以快速定义一个前馈神经网路,按顺序堆叠不同的层,但是要保证层之间的输入和输出尺寸要匹配。
import torch
from torch import nn
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoaderclass CIFAR10_NET(nn.Module):def __init__(self):super(CIFAR10_NET, self).__init__()self.conv1 = nn.Conv2d(3, 32, 5,padding=2) # 输入输出尺寸相同,故根据公式计算出padding的值self.pool1 = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(32, 32, 5,padding=2)self.pool2 = nn.MaxPool2d(2, 2)self.conv3 = nn.Conv2d(32, 64, 5,padding=2)self.pool3 = nn.MaxPool2d(2, 2)self.flatten = nn.Flatten()self.linear1 = nn.Linear(1024, 64)self.linear2 = nn.Linear(64, 10)def forward(self, x):x = self.conv1(x)x = self.pool1(x)x = self.conv2(x)x = self.pool2(x)x = self.conv3(x)x = self.pool3(x)x = self.flatten(x)x = self.linear1(x)x = self.linear2(x)return xCIFAR10_NET_Instance = CIFAR10_NET()
print(CIFAR10_NET_Instance)
有 Sequential() 函数的 demo :
import torch
from torch import nn
from torch.utils.tensorboard import SummaryWriterclass CIFAR10_NET(nn.Module):def __init__(self):super(CIFAR10_NET, self).__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, 5, padding=2), # 输入输出尺寸相同,故根据卷积层的公式计算出padding的值,此时默认stride=1nn.MaxPool2d(2, 2),nn.Conv2d(32, 32, 5, padding=2),nn.MaxPool2d(2, 2),nn.Conv2d(32, 64, 5, padding=2),nn.MaxPool2d(2, 2),nn.Flatten(),nn.Linear(1024, 64),nn.Linear(64, 10))def forward(self, x):x = self.model(x)return xCIFAR10_NET_Instance = CIFAR10_NET()
print(CIFAR10_NET_Instance)writer = SummaryWriter('logs')
writer.add_graph(CIFAR10_NET_Instance, (torch.rand(1, 3, 32, 32), )) # 在tensorboard中将计算图可视化
writer.close()
在命令行使用 tensorboard 的效果图:

双击网络模型名:

继续双击会出现更多的细节内容!!
2)注意点:
-
如果想要输入和输出的尺寸相同的话,需要按照卷积层中的公式来计算
padding和stride的值,具体情参考笔记(十)。 -
一般先搭建网络,在导入数据集之前,往往先用以下代码进行测试:
# 先创建网络模型实例,假设为 test_net input = torch.ones((64,in_channels,H_in,W_in)) # in_channels、H_in、W_in根据数据集的输入设置 output = test_net(input) print(output.shape)如果网络模型有错误,就会报错。
| 上一篇 | 下一篇 |
|---|---|
| 神经网络入门实战(十三) | 待发布 |
相关文章:
神经网络入门实战:(十四)pytorch 官网内置的 CIFAR10 数据集,及其网络模型
(一) pytorch 官网内置的网络模型 图像处理: Models and pre-trained weights — Torchvision 0.20 documentation (二) CIFAR10数据集的分类网络模型(仅前向传播): 下方的网络模型图片有误,已做修改,具…...
【Rust在WASM中实现pdf文件的生成】
Rust在WASM中实现pdf文件的生成 前言概念和依赖问题描述分步实现pdf转Blob生成URL两种方式利用localstorage传递参数处理图片Vec<u8>到pdf格式的Vec<u8>使用rust创建iframe显示pdf的Blob最后 前言 实现了一个通用的前端jpg转pdf的wasm,因为动态响应框架无法直接打…...
在MySQL中执行sum case when报错:SUM does not exist
1. 报错 在pgsql中能正常运行的一段SQL在MySQL中运行的时候报错了: SELECT DATE( hr.handle_time ) AS statsDate,SUM ( CASE WHEN hma.app_type IN ( 2, 5 ) THEN ch_money ELSE 0 END ) AS aliPayAmt,SUM ( CASE WHEN hma.app_type IN ( 1, 4 ) THEN ch_money EL…...
【openssl】相关指令
熟悉下相关概念 x509:证书标准pem和der:两种(包括公私钥、证书签名请求、证书等内容的)的格式,前者是文本形式,linux常用,后者是二进制形式,windows常用,仅仅是格式&…...
实例分割详解
实例分割详解 引言 实例分割是计算机视觉领域的一项复杂任务,它要求模型能够识别图像中不同类别的对象,并对每个单独的对象进行像素级别的分类。与语义分割不同的是,实例分割不仅要区分不同的类别,还要识别同一类别中的不同个体…...
D87【python 接口自动化学习】- pytest基础用法
day87 pytest运行参数 -m -k 学习日期:20241203 学习目标:pytest基础用法 -- pytest运行参数-m -k 学习笔记: 常用运行参数 pytest运行参数-m -k pytest -m 执行特定的测试用例,markers最好使用英文 [pytest] testpaths./te…...
浅谈MySQL路由
华子目录 mysql-router介绍下载mysql-router安装mysql-router实验 mysql-router介绍 mysql-router是一个对应用程序透明的InnoDB Cluster连接路由服务,提供负载均衡、应用连接故障转移和客户端路由利用路由器的连接路由特性,用户可以编写应用程序来连接到…...
matlab中disp,fprintf,sprintf,display,dlmwrite输出函数之间的区别
下面是他们之间的区别: disp函数与fprintf函数的区别 输出格式的灵活性 disp函数:输出格式相对固定。它会自动将变量以一种比较直接的方式显示出来。对于数组,会按照行列形式展示;对于字符串,直接原样输出并换行。例如…...
30.100ASK_T113-PRO 用QT编写视频播放器(一)
1.再buildroot中添加视频解码库 X264, 执行 make menuconfig Target packages -->Libraries --> Multimedia --> X264 CLI 还需要添加 FFmpeg 2. 保存,重新编译 make all 3.将镜像下载开发板...
Linux-GPIO应用编程
本章介绍应用层如何控制 GPIO,譬如控制 GPIO 输出高电平、或输出低电平。 只要是用到GPIO的外设,都有可能用得到这些操作方法。 照理说,GPIO的操作应该是由驱动层去做的,使用寄存器操作或者GPIO子系统之类的框架。 但是࿰…...
opencvocr识别手机摄像头拍摄的指定区域文字,文字符合规则就语音报警
安装python,pycharm,自行安装。 Python下安装OpenCv 2.1 打开cmd,先安装opencv-python pip install opencv-python --user -i https://pypi.tuna.tsinghua.edu.cn/simple2.2 再安装opencv-contrib-python pip install opencv-contrib-python --user …...
微服务即时通讯系统(5)用户管理子服务,网关子服务
用户管理子服务(user文件) 用户管理子服务也是这个项目中的一个业务最多的子服务,接口多,但是主要涉及的数据表只有user表,Redis的键值对和ES的一个搜索引擎,主要功能是对用户的个人信息进行修改管理&#…...
postgreSQL安装后启动有The application server could not be contacted问题
不得不说pgsql是真的麻烦,找问题找了几个小时才解决.直接步入主题吧 首先问题如下 安装后,双击启动就出现上述问题 首先删除路径为 c:\Users\your_name\AppData\Roaming\pgAdmin 之内的所有文件和文件夹, 如果找不到AppData,就把这个点开 接着找到你安装pgsql的路径,我的是D…...
架构05-架构安全性
零、文章目录 架构05-架构安全性 1、软件架构安全的重要性 **系统安全:**不仅包括防御黑客攻击,还包括安全备份与恢复、安全审计、防治病毒等。**关注重点:**认证、授权、凭证、保密、传输安全、验证。 2、认证(Authenticatio…...
虚幻引擎---材质篇
一、基础知识 虚幻引擎中的材质(Materials) 定义了场景中对象的表面属性,包括颜色、金属度、粗糙度、透明度等等;可以在材质编辑器中可视化地创建和编辑材质;虚幻引擎的渲染管线的着色器是用高级着色语言(…...
NPM镜像详解
NPM镜像详解 什么是NPM镜像 NPM镜像(NPM Mirror)是一个完整的NPM包的副本服务器。由于npm的官方registry服务器部署在国外,国内访问可能会比较慢,因此使用镜像可以加快包的下载速度。 常用的NPM镜像源 npm官方镜像 https://reg…...
从智能合约到去中心化AI:Web3的技术蓝图
Web3正在成为互联网发展的重要方向,其核心理念是去中心化、用户主权和自治。随着区块链技术、智能合约以及人工智能(AI)等技术的发展,Web3不仅重新定义了数据存储和交易方式,还为更智能化、去中心化的数字生态系统铺平…...
STM32进阶 定时器3 通用定时器 案例1:LED呼吸灯——PWM脉冲
功能 它有基本定时器所有功能,还增加以下功能 TIM2、TIM3、TIM4、TIM5 多种时钟源: 外部时钟源模式1: 每个定时器有四个输入通道 只有通道1和通道2的信号可以作为时钟信号源 通道1 和通道2 的信号经过输入滤液和边缘检测器 外部时钟源…...
开源即时通讯与闭源即时通讯该怎么选择,其优势是什么?
在选择即时通讯软件时,应根据企业的经营领域来选择适合自身需求的开源或闭源方案。不同领域对开源和闭源即时通讯的理念存在差异,因此总结两个点简要分析这两种选择,有助于做出更明智的决策。 一、开源与闭源的根本区别在于软件的源代码是否…...
930[water]
算法...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...
QT3D学习笔记——圆台、圆锥
类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体(对象或容器)QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质(定义颜色、反光等)QFirstPersonC…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
ZYNQ学习记录FPGA(一)ZYNQ简介
一、知识准备 1.一些术语,缩写和概念: 1)ZYNQ全称:ZYNQ7000 All Pgrammable SoC 2)SoC:system on chips(片上系统),对比集成电路的SoB(system on board) 3)ARM:处理器…...
