神经网络入门实战:(十四)pytorch 官网内置的 CIFAR10 数据集,及其网络模型
(一) pytorch 官网内置的网络模型
图像处理:
Models and pre-trained weights — Torchvision 0.20 documentation
(二) CIFAR10数据集的分类网络模型(仅前向传播):
下方的网络模型图片有误,已做修改,具体情参考代码。
1)代码如下:
无 Sequential()
函数的 demo
:
Sequential()
函数可以快速定义一个前馈神经网路,按顺序堆叠不同的层,但是要保证层之间的输入和输出尺寸要匹配。
import torch
from torch import nn
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoaderclass CIFAR10_NET(nn.Module):def __init__(self):super(CIFAR10_NET, self).__init__()self.conv1 = nn.Conv2d(3, 32, 5,padding=2) # 输入输出尺寸相同,故根据公式计算出padding的值self.pool1 = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(32, 32, 5,padding=2)self.pool2 = nn.MaxPool2d(2, 2)self.conv3 = nn.Conv2d(32, 64, 5,padding=2)self.pool3 = nn.MaxPool2d(2, 2)self.flatten = nn.Flatten()self.linear1 = nn.Linear(1024, 64)self.linear2 = nn.Linear(64, 10)def forward(self, x):x = self.conv1(x)x = self.pool1(x)x = self.conv2(x)x = self.pool2(x)x = self.conv3(x)x = self.pool3(x)x = self.flatten(x)x = self.linear1(x)x = self.linear2(x)return xCIFAR10_NET_Instance = CIFAR10_NET()
print(CIFAR10_NET_Instance)
有 Sequential()
函数的 demo
:
import torch
from torch import nn
from torch.utils.tensorboard import SummaryWriterclass CIFAR10_NET(nn.Module):def __init__(self):super(CIFAR10_NET, self).__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, 5, padding=2), # 输入输出尺寸相同,故根据卷积层的公式计算出padding的值,此时默认stride=1nn.MaxPool2d(2, 2),nn.Conv2d(32, 32, 5, padding=2),nn.MaxPool2d(2, 2),nn.Conv2d(32, 64, 5, padding=2),nn.MaxPool2d(2, 2),nn.Flatten(),nn.Linear(1024, 64),nn.Linear(64, 10))def forward(self, x):x = self.model(x)return xCIFAR10_NET_Instance = CIFAR10_NET()
print(CIFAR10_NET_Instance)writer = SummaryWriter('logs')
writer.add_graph(CIFAR10_NET_Instance, (torch.rand(1, 3, 32, 32), )) # 在tensorboard中将计算图可视化
writer.close()
在命令行使用 tensorboard
的效果图:
双击网络模型名:
继续双击会出现更多的细节内容!!
2)注意点:
-
如果想要输入和输出的尺寸相同的话,需要按照卷积层中的公式来计算
padding
和stride
的值,具体情参考笔记(十)。 -
一般先搭建网络,在导入数据集之前,往往先用以下代码进行测试:
# 先创建网络模型实例,假设为 test_net input = torch.ones((64,in_channels,H_in,W_in)) # in_channels、H_in、W_in根据数据集的输入设置 output = test_net(input) print(output.shape)
如果网络模型有错误,就会报错。
上一篇 | 下一篇 |
---|---|
神经网络入门实战(十三) | 待发布 |
相关文章:

神经网络入门实战:(十四)pytorch 官网内置的 CIFAR10 数据集,及其网络模型
(一) pytorch 官网内置的网络模型 图像处理: Models and pre-trained weights — Torchvision 0.20 documentation (二) CIFAR10数据集的分类网络模型(仅前向传播): 下方的网络模型图片有误,已做修改,具…...

【Rust在WASM中实现pdf文件的生成】
Rust在WASM中实现pdf文件的生成 前言概念和依赖问题描述分步实现pdf转Blob生成URL两种方式利用localstorage传递参数处理图片Vec<u8>到pdf格式的Vec<u8>使用rust创建iframe显示pdf的Blob最后 前言 实现了一个通用的前端jpg转pdf的wasm,因为动态响应框架无法直接打…...
在MySQL中执行sum case when报错:SUM does not exist
1. 报错 在pgsql中能正常运行的一段SQL在MySQL中运行的时候报错了: SELECT DATE( hr.handle_time ) AS statsDate,SUM ( CASE WHEN hma.app_type IN ( 2, 5 ) THEN ch_money ELSE 0 END ) AS aliPayAmt,SUM ( CASE WHEN hma.app_type IN ( 1, 4 ) THEN ch_money EL…...
【openssl】相关指令
熟悉下相关概念 x509:证书标准pem和der:两种(包括公私钥、证书签名请求、证书等内容的)的格式,前者是文本形式,linux常用,后者是二进制形式,windows常用,仅仅是格式&…...
实例分割详解
实例分割详解 引言 实例分割是计算机视觉领域的一项复杂任务,它要求模型能够识别图像中不同类别的对象,并对每个单独的对象进行像素级别的分类。与语义分割不同的是,实例分割不仅要区分不同的类别,还要识别同一类别中的不同个体…...

D87【python 接口自动化学习】- pytest基础用法
day87 pytest运行参数 -m -k 学习日期:20241203 学习目标:pytest基础用法 -- pytest运行参数-m -k 学习笔记: 常用运行参数 pytest运行参数-m -k pytest -m 执行特定的测试用例,markers最好使用英文 [pytest] testpaths./te…...

浅谈MySQL路由
华子目录 mysql-router介绍下载mysql-router安装mysql-router实验 mysql-router介绍 mysql-router是一个对应用程序透明的InnoDB Cluster连接路由服务,提供负载均衡、应用连接故障转移和客户端路由利用路由器的连接路由特性,用户可以编写应用程序来连接到…...

matlab中disp,fprintf,sprintf,display,dlmwrite输出函数之间的区别
下面是他们之间的区别: disp函数与fprintf函数的区别 输出格式的灵活性 disp函数:输出格式相对固定。它会自动将变量以一种比较直接的方式显示出来。对于数组,会按照行列形式展示;对于字符串,直接原样输出并换行。例如…...

30.100ASK_T113-PRO 用QT编写视频播放器(一)
1.再buildroot中添加视频解码库 X264, 执行 make menuconfig Target packages -->Libraries --> Multimedia --> X264 CLI 还需要添加 FFmpeg 2. 保存,重新编译 make all 3.将镜像下载开发板...

Linux-GPIO应用编程
本章介绍应用层如何控制 GPIO,譬如控制 GPIO 输出高电平、或输出低电平。 只要是用到GPIO的外设,都有可能用得到这些操作方法。 照理说,GPIO的操作应该是由驱动层去做的,使用寄存器操作或者GPIO子系统之类的框架。 但是࿰…...

opencvocr识别手机摄像头拍摄的指定区域文字,文字符合规则就语音报警
安装python,pycharm,自行安装。 Python下安装OpenCv 2.1 打开cmd,先安装opencv-python pip install opencv-python --user -i https://pypi.tuna.tsinghua.edu.cn/simple2.2 再安装opencv-contrib-python pip install opencv-contrib-python --user …...

微服务即时通讯系统(5)用户管理子服务,网关子服务
用户管理子服务(user文件) 用户管理子服务也是这个项目中的一个业务最多的子服务,接口多,但是主要涉及的数据表只有user表,Redis的键值对和ES的一个搜索引擎,主要功能是对用户的个人信息进行修改管理&#…...

postgreSQL安装后启动有The application server could not be contacted问题
不得不说pgsql是真的麻烦,找问题找了几个小时才解决.直接步入主题吧 首先问题如下 安装后,双击启动就出现上述问题 首先删除路径为 c:\Users\your_name\AppData\Roaming\pgAdmin 之内的所有文件和文件夹, 如果找不到AppData,就把这个点开 接着找到你安装pgsql的路径,我的是D…...

架构05-架构安全性
零、文章目录 架构05-架构安全性 1、软件架构安全的重要性 **系统安全:**不仅包括防御黑客攻击,还包括安全备份与恢复、安全审计、防治病毒等。**关注重点:**认证、授权、凭证、保密、传输安全、验证。 2、认证(Authenticatio…...

虚幻引擎---材质篇
一、基础知识 虚幻引擎中的材质(Materials) 定义了场景中对象的表面属性,包括颜色、金属度、粗糙度、透明度等等;可以在材质编辑器中可视化地创建和编辑材质;虚幻引擎的渲染管线的着色器是用高级着色语言(…...
NPM镜像详解
NPM镜像详解 什么是NPM镜像 NPM镜像(NPM Mirror)是一个完整的NPM包的副本服务器。由于npm的官方registry服务器部署在国外,国内访问可能会比较慢,因此使用镜像可以加快包的下载速度。 常用的NPM镜像源 npm官方镜像 https://reg…...

从智能合约到去中心化AI:Web3的技术蓝图
Web3正在成为互联网发展的重要方向,其核心理念是去中心化、用户主权和自治。随着区块链技术、智能合约以及人工智能(AI)等技术的发展,Web3不仅重新定义了数据存储和交易方式,还为更智能化、去中心化的数字生态系统铺平…...

STM32进阶 定时器3 通用定时器 案例1:LED呼吸灯——PWM脉冲
功能 它有基本定时器所有功能,还增加以下功能 TIM2、TIM3、TIM4、TIM5 多种时钟源: 外部时钟源模式1: 每个定时器有四个输入通道 只有通道1和通道2的信号可以作为时钟信号源 通道1 和通道2 的信号经过输入滤液和边缘检测器 外部时钟源…...

开源即时通讯与闭源即时通讯该怎么选择,其优势是什么?
在选择即时通讯软件时,应根据企业的经营领域来选择适合自身需求的开源或闭源方案。不同领域对开源和闭源即时通讯的理念存在差异,因此总结两个点简要分析这两种选择,有助于做出更明智的决策。 一、开源与闭源的根本区别在于软件的源代码是否…...

930[water]
算法...

测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...
c# 局部函数 定义、功能与示例
C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...

Linux基础开发工具——vim工具
文章目录 vim工具什么是vimvim的多模式和使用vim的基础模式vim的三种基础模式三种模式的初步了解 常用模式的详细讲解插入模式命令模式模式转化光标的移动文本的编辑 底行模式替换模式视图模式总结 使用vim的小技巧vim的配置(了解) vim工具 本文章仍然是继续讲解Linux系统下的…...

echarts使用graphic强行给图增加一个边框(边框根据自己的图形大小设置)- 适用于无法使用dom的样式
pdf-lib https://blog.csdn.net/Shi_haoliu/article/details/148157624?spm1001.2014.3001.5501 为了完成在pdf中导出echarts图,如果边框加在dom上面,pdf-lib导出svg的时候并不会导出边框,所以只能在echarts图上面加边框 grid的边框是在图里…...

Linux操作系统共享Windows操作系统的文件
目录 一、共享文件 二、挂载 一、共享文件 点击虚拟机选项-设置 点击选项,设置文件夹共享为总是启用,点击添加,可添加需要共享的文件夹 查询是否共享成功 ls /mnt/hgfs 如果显示Download(这是我共享的文件夹)&…...
[特殊字符] Spring Boot底层原理深度解析与高级面试题精析
一、Spring Boot底层原理详解 Spring Boot的核心设计哲学是约定优于配置和自动装配,通过简化传统Spring应用的初始化和配置流程,显著提升开发效率。其底层原理可拆解为以下核心机制: 自动装配(Auto-Configuration) 核…...
宠物车载安全座椅市场报告:解读行业趋势与投资前景
一、什么是宠物车载安全座椅? 宠物车载安全座椅是一种专为宠物设计的车内固定装置,旨在保障宠物在乘车过程中的安全性与舒适性。它通常由高强度材料制成,具备良好的缓冲性能,并可通过安全带或ISOFIX接口固定于车内。 近年来&…...
【R语言编程——数据调用】
这里写自定义目录标题 可用库及数据集外部数据导入方法查看数据集信息 在R语言中,有多个库支持调用内置数据集或外部数据,包括studentdata等教学或示例数据集。以下是常见的库和方法: 可用库及数据集 openintro库 该库包含多个教学数据集&a…...