当前位置: 首页 > news >正文

2024年顶级小型语言模型前15名

本文,我们将深入了解2024年备受瞩目的十五款小型语言模型(SLMs),它们分别是Llama 3.1 8B、Gemma2、Qwen 2、Mistral Nemo、Phi-3.5等。这些SLMs以其精巧的体积和高效率著称,它们不需要依赖庞大的服务器资源,这与它们的大型语言模型(LLMs)对手形成了鲜明对比。它们为速度和实时性能而生,甚至能在智能手机、平板电脑或智能手表上流畅运行。

图片

来源:Lu et al., 2024(https://arxiv.org/pdf/2409.15790)

我们即将展开的旅程将带领我们检视这些SLMs的卓越之处、潜在的不足,以及它们各自独有的特色。

首先,让我们聚焦于Qwen2,这是一款涵盖0.5B、1B至7B参数范围的模型系列。对于追求极致轻量化应用的开发者而言,0.5B版本无疑是理想之选。而对于那些需要更强大模型来执行摘要或文本生成等任务的用户,7B版本将提供无与伦比的性能。Qwen2模型在速度与效率并重的实用场景中大放异彩,尤其适合对快速响应或资源受限的应用场景。

接下来,我们有Mistral Nemo 12B,这款拥有12B参数的模型在处理复杂的自然语言处理(NLP)任务,如语言翻译和实时对话系统方面表现出色。它与Falcon 40B、Chinchilla 70B等模型同台竞技,却能在无需庞大基础设施的条件下本地运行,实现了复杂性与实用性的完美结合。

Llama 3.1 8B,这款携带8B参数的模型,在功能与效率之间取得了令人赞叹的平衡。它在问答和情感分析等任务中表现出类拔萃。对于那些急需快速结果而又不愿牺牲计算能力的用户,Llama 3.1 8B提供了一个性能与速度并重的优选。

Pythia系列,参数从1.6亿延伸至28亿,这一系列模型专为推理和编程技能任务量身定制。对于软件开发者,Pythia在处理结构化、逻辑性任务方面的能力无人能出其右。它在编码和推理任务上的表现超越了GPT-Neo等其他模型,尽管在更广泛的语言任务中可能会有所波动。Pythia的公共训练透明度和定制选项令人印象深刻,它的灵活性使其成为适应特定需求的强有力工具。

Cerebras-GPT,这款参数在1.11亿至27亿间变动的高效快速模型,专为资源有限但对性能有高要求的环境设计。与GPT-3或LLaMA 13B等大型模型相比,Cerebras-GPT虽在广泛训练上或有不及,但其遵循Chinchilla缩放法则,展现出极高的计算效率。对于那些追求可扩展性和效率的用户,Cerebras-GPT无疑是最佳选择。

Phi-3.5,这款38亿参数的模型,以其128K令牌的上下文长度独树一帜。它能够处理长文档或多轮对话任务,且不会丢失上下文,同时支持多语言,成为Llama 13B和GPT-3.5等模型的强有力竞争者,且计算需求相对较低。它在文档摘要、多语言任务和逻辑推理方面的表现令人期待。

StableLM-Zephyr,这款30亿参数的小型语言模型,在提供精确性和速度方面表现出色。它在边缘系统或资源受限设备中,面对需要快速决策的环境时,能提供出色的表现。StableLM-Zephyr在推理甚至角色扮演任务中同样游刃有余,虽然在处理写作或编码等复杂任务时可能不及大型模型,但考虑到其体积,它的表现已足够令人称赞。若速度和效率是您的首要考量,StableLM-Zephyr无疑是个坚实的选择。

TinyLlama,这款11亿参数的紧凑模型,以其出色的效率在移动和边缘设备上的表现令人印象深刻。在现实世界的任务中,尤其是在常识推理方面,TinyLlama甚至超越了Pythia-1.4B等模型。尽管它可能缺乏LLaMA 13B等大型模型的原始计算能力,但它在性能与资源效率之间取得了巧妙的平衡,使其成为资源受限环境中的理想选择。

MobileLLaMA,这款为移动和低功耗设备设计的LLaMA专用版本,拥有14亿参数,旨在在性能与效率间找到平衡点。它针对移动设备中的低延迟AI应用进行了优化。无论是MobileLLaMA-1.4B还是MobileLLaMA-2.7B版本,都在速度上超越了TinyLLaMA 1.1B等小型模型,并与OpenLLaMA 3B不相上下,且速度提升约40%。对于需要设备上实时AI的用户,MobileLLaMA无疑是完美的伴侣。

LaMini-GPT,这款参数介于7.74亿至15亿的模型,专为多语言任务设计,它在资源受限的环境中表现出色,能够处理多种语言而不需要大量计算资源。LaMini-GPT通过从GPT家族的大型模型中进行知识蒸馏而开发,这使得它在遵循指令的任务中表现出色。尽管它在特定任务上表现出色,但对于需要深入上下文理解或更广泛文本生成的应用,它可能不是最佳选择。如果您寻求的是快速且高效的解决方案,尤其是在多语言场景下,LaMini-GPT是一个可靠的选择。

Gemma2,这款20亿参数的模型,若您考虑本地部署,它将展现出卓越的性能。它轻量级且高效,非常适合文本生成或翻译等任务。与OpenAI o1-preview等重量级选手相比,Gemma2更专注于实时应用而非复杂推理。对于边缘计算,它是GPT-3.5或Llama 65B等资源密集型模型的完美替代品。

MiniCPM,这款参数在10亿至40亿之间的模型,在性能与资源效率之间取得了良好的平衡。它旨在轻松处理一般语言任务,并在众多应用中提供可靠的性能,是一个全能的选择。MiniCPM虽小,但其性能可与Mistral-7B和LLaMA 7B等大型模型相媲美。它特别针对英语和中文的语言处理进行了优化,使其成为资源有限环境中的高效轻量级替代品。

OpenELM,这款参数在2.7亿至30亿之间的灵活且可适应的模型,专为需要多任务处理和低延迟响应的环境设计。由苹果公司开发,OpenELM专注于能源效率和设备上的AI应用。它与MobiLlama和OLMo等模型竞争,在针对特定任务进行调整时显示出显著的改进。凭借其广泛的参数范围,OpenELM针对更小、更受限的环境进行了优化。

DCLM,这款10亿参数的模型,专为常识推理设计。它在需要理解和逻辑推断的真实世界任务中表现出色。DCLM在语言理解和推理方面表现出色,尤其是其70亿参数版本。它与LLaMA 2 (7B)和Mistral 7B等模型竞争,在常识推理和逻辑推断任务中表现同样出色。DCLM针对需要效率和较少计算资源的真实世界应用进行了高度优化,因此当您拥有需要强大性能而不需要重型基础设施的环境时,DCLM是一个很好的选择。

Fox,这款16亿参数的模型,专为速度和效率而生。它为移动应用优化,保持低延迟至关重要。Fox在不消耗过多计算能力的情况下提供快速响应。

模型名称参数开源主要特点
Qwen20.5B, 1B, 7B可扩展,适用于各种任务
Mistral Nemo 12B12B复杂的自然语言处理任务,本地部署
Llama 3.1 8B8B是*平衡性能和效率
Pythia160M - 2.8B专注于推理和编码
Cerebras-GPT111M - 2.7B计算效率高,遵循Chinchilla缩放法则
Phi-3.53.8B是**长上下文长度(128K令牌),多语言
StableLM-zephyr3B快速推理,边缘系统高效
TinyLlama1.1B移动和边缘设备高效
MobileLLaMA1.4B为移动和低功耗设备优化
LaMini-GPT774M - 1.5B多语言,指令跟随任务
Gemma29B, 27B本地部署,实时应用
MiniCPM1B - 4B平衡性能,英文和中文优化
OpenELM270M - 3B多任务处理,低延迟,节能
DCLM1B常识推理,逻辑推理
Fox1.6B为移动应用速度优化

通过这个表格,我们总结了上述所有内容,展示了各模型的参数、开源状态和主要特点。这些SLMs在许多方面证明了,规模小并不意味着能力弱,反而在很多情况下,它们更加智能和灵活。预计这些SLMs将更多地融入到我们的日常生活中。so,找到合适的模型来完成工作是关键——在很多情况下,合适的模型可能只是小而敏捷的。

相关文章:

2024年顶级小型语言模型前15名

本文,我们将深入了解2024年备受瞩目的十五款小型语言模型(SLMs),它们分别是Llama 3.1 8B、Gemma2、Qwen 2、Mistral Nemo、Phi-3.5等。这些SLMs以其精巧的体积和高效率著称,它们不需要依赖庞大的服务器资源&#xff0c…...

精通 Python 网络安全(一)

前言 最近,Python 开始受到越来越多的关注,最新的 Python 更新添加了许多可用于执行关键任务的包。我们的主要目标是帮助您利用 Python 包来检测和利用漏洞,并解决网络挑战。 本书将首先带您了解与网络和安全相关的 Python 脚本和库。然后&…...

【python自动化二】pytest集成allure生成测试报告

pytest本身不会直接生成测试报告,而allure是一种生成测试报告的公共插件,可与多种测试框架配合生成测试报告,本文介绍下如何集成allure生成测试报告。 1.allure安装 1.安装allure-pytest 先安装allure的pytest插件,用于在pytes…...

网络版本的通讯录青春版(protobuf)

环境搭建 Protobuf 还常⽤于通讯协议、服务端数据交换场景。 因为我们主要目的只是为了学习protobuf,因此对于客户端,原本应该具备: 新增⼀个联系⼈ ◦ 删除⼀个联系⼈ ◦ 查询通讯录列表 ◦ 查询⼀个联系⼈的详细信息 这样四个功能。 …...

开源模型应用落地-安全合规篇-用户输入价值观判断(三)

一、前言 在深度合规功能中,对用户输入内容的价值观判断具有重要意义。这一功能不仅仅是对信息合法性和合规性的简单审核,更是对信息背后隐含的伦理道德和社会责任的深刻洞察。通过对价值观的判断,系统能够识别可能引发不当影响或冲突的内容,从而为用户提供更安全、更和谐的…...

神经网络入门实战:(十四)pytorch 官网内置的 CIFAR10 数据集,及其网络模型

(一) pytorch 官网内置的网络模型 图像处理: Models and pre-trained weights — Torchvision 0.20 documentation (二) CIFAR10数据集的分类网络模型(仅前向传播): 下方的网络模型图片有误,已做修改,具…...

【Rust在WASM中实现pdf文件的生成】

Rust在WASM中实现pdf文件的生成 前言概念和依赖问题描述分步实现pdf转Blob生成URL两种方式利用localstorage传递参数处理图片Vec<u8>到pdf格式的Vec<u8>使用rust创建iframe显示pdf的Blob最后 前言 实现了一个通用的前端jpg转pdf的wasm,因为动态响应框架无法直接打…...

在MySQL中执行sum case when报错:SUM does not exist

1. 报错 在pgsql中能正常运行的一段SQL在MySQL中运行的时候报错了&#xff1a; SELECT DATE( hr.handle_time ) AS statsDate,SUM ( CASE WHEN hma.app_type IN ( 2, 5 ) THEN ch_money ELSE 0 END ) AS aliPayAmt,SUM ( CASE WHEN hma.app_type IN ( 1, 4 ) THEN ch_money EL…...

【openssl】相关指令

熟悉下相关概念 x509&#xff1a;证书标准pem和der&#xff1a;两种&#xff08;包括公私钥、证书签名请求、证书等内容的&#xff09;的格式&#xff0c;前者是文本形式&#xff0c;linux常用&#xff0c;后者是二进制形式&#xff0c;windows常用&#xff0c;仅仅是格式&…...

实例分割详解

实例分割详解 引言 实例分割是计算机视觉领域的一项复杂任务&#xff0c;它要求模型能够识别图像中不同类别的对象&#xff0c;并对每个单独的对象进行像素级别的分类。与语义分割不同的是&#xff0c;实例分割不仅要区分不同的类别&#xff0c;还要识别同一类别中的不同个体…...

D87【python 接口自动化学习】- pytest基础用法

day87 pytest运行参数 -m -k 学习日期&#xff1a;20241203 学习目标&#xff1a;pytest基础用法 -- pytest运行参数-m -k 学习笔记&#xff1a; 常用运行参数 pytest运行参数-m -k pytest -m 执行特定的测试用例&#xff0c;markers最好使用英文 [pytest] testpaths./te…...

浅谈MySQL路由

华子目录 mysql-router介绍下载mysql-router安装mysql-router实验 mysql-router介绍 mysql-router是一个对应用程序透明的InnoDB Cluster连接路由服务&#xff0c;提供负载均衡、应用连接故障转移和客户端路由利用路由器的连接路由特性&#xff0c;用户可以编写应用程序来连接到…...

matlab中disp,fprintf,sprintf,display,dlmwrite输出函数之间的区别

下面是他们之间的区别&#xff1a; disp函数与fprintf函数的区别 输出格式的灵活性 disp函数&#xff1a;输出格式相对固定。它会自动将变量以一种比较直接的方式显示出来。对于数组&#xff0c;会按照行列形式展示&#xff1b;对于字符串&#xff0c;直接原样输出并换行。例如…...

30.100ASK_T113-PRO 用QT编写视频播放器(一)

1.再buildroot中添加视频解码库 X264, 执行 make menuconfig Target packages -->Libraries --> Multimedia --> X264 CLI 还需要添加 FFmpeg 2. 保存,重新编译 make all 3.将镜像下载开发板...

Linux-GPIO应用编程

本章介绍应用层如何控制 GPIO&#xff0c;譬如控制 GPIO 输出高电平、或输出低电平。 只要是用到GPIO的外设&#xff0c;都有可能用得到这些操作方法。 照理说&#xff0c;GPIO的操作应该是由驱动层去做的&#xff0c;使用寄存器操作或者GPIO子系统之类的框架。 但是&#xff0…...

opencvocr识别手机摄像头拍摄的指定区域文字,文字符合规则就语音报警

安装python&#xff0c;pycharm&#xff0c;自行安装。 Python下安装OpenCv 2.1 打开cmd,先安装opencv-python pip install opencv-python --user -i https://pypi.tuna.tsinghua.edu.cn/simple2.2 再安装opencv-contrib-python pip install opencv-contrib-python --user …...

微服务即时通讯系统(5)用户管理子服务,网关子服务

用户管理子服务&#xff08;user文件&#xff09; 用户管理子服务也是这个项目中的一个业务最多的子服务&#xff0c;接口多&#xff0c;但是主要涉及的数据表只有user表&#xff0c;Redis的键值对和ES的一个搜索引擎&#xff0c;主要功能是对用户的个人信息进行修改管理&#…...

postgreSQL安装后启动有The application server could not be contacted问题

不得不说pgsql是真的麻烦,找问题找了几个小时才解决.直接步入主题吧 首先问题如下 安装后,双击启动就出现上述问题 首先删除路径为 c:\Users\your_name\AppData\Roaming\pgAdmin 之内的所有文件和文件夹, 如果找不到AppData,就把这个点开 接着找到你安装pgsql的路径,我的是D…...

架构05-架构安全性

零、文章目录 架构05-架构安全性 1、软件架构安全的重要性 **系统安全&#xff1a;**不仅包括防御黑客攻击&#xff0c;还包括安全备份与恢复、安全审计、防治病毒等。**关注重点&#xff1a;**认证、授权、凭证、保密、传输安全、验证。 2、认证&#xff08;Authenticatio…...

虚幻引擎---材质篇

一、基础知识 虚幻引擎中的材质&#xff08;Materials&#xff09; 定义了场景中对象的表面属性&#xff0c;包括颜色、金属度、粗糙度、透明度等等&#xff1b;可以在材质编辑器中可视化地创建和编辑材质&#xff1b;虚幻引擎的渲染管线的着色器是用高级着色语言&#xff08;…...

NPM镜像详解

NPM镜像详解 什么是NPM镜像 NPM镜像&#xff08;NPM Mirror&#xff09;是一个完整的NPM包的副本服务器。由于npm的官方registry服务器部署在国外&#xff0c;国内访问可能会比较慢&#xff0c;因此使用镜像可以加快包的下载速度。 常用的NPM镜像源 npm官方镜像 https://reg…...

从智能合约到去中心化AI:Web3的技术蓝图

Web3正在成为互联网发展的重要方向&#xff0c;其核心理念是去中心化、用户主权和自治。随着区块链技术、智能合约以及人工智能&#xff08;AI&#xff09;等技术的发展&#xff0c;Web3不仅重新定义了数据存储和交易方式&#xff0c;还为更智能化、去中心化的数字生态系统铺平…...

STM32进阶 定时器3 通用定时器 案例1:LED呼吸灯——PWM脉冲

功能 它有基本定时器所有功能&#xff0c;还增加以下功能 TIM2、TIM3、TIM4、TIM5 多种时钟源&#xff1a; 外部时钟源模式1&#xff1a; 每个定时器有四个输入通道 只有通道1和通道2的信号可以作为时钟信号源 通道1 和通道2 的信号经过输入滤液和边缘检测器 外部时钟源…...

开源即时通讯与闭源即时通讯该怎么选择,其优势是什么?

在选择即时通讯软件时&#xff0c;应根据企业的经营领域来选择适合自身需求的开源或闭源方案。不同领域对开源和闭源即时通讯的理念存在差异&#xff0c;因此总结两个点简要分析这两种选择&#xff0c;有助于做出更明智的决策。 一、开源与闭源的根本区别在于软件的源代码是否…...

930[water]

算法...

2024论文翻译 | Multi-Review Fusion-in-Context

摘要 接地气的文本生成&#xff0c;包括长篇问答和摘要等任务&#xff0c;需要同时进行内容选择和内容整合。当前的端到端方法由于其不透明性&#xff0c;难以控制和解释。因此&#xff0c;近期的研究提出了一个模块化方法&#xff0c;每个步骤都有独立的组件。具体来说&#…...

(78)MPSK基带调制通信系统瑞利平坦衰落信道传输性能的MATLAB仿真

文章目录 前言一、MATLAB仿真1.仿真代码2.仿真结果 二、子函数与完整代码总结 前言 本文给出瑞利平坦衰落信道上的M-PSK通信系统性能仿真的MATLAB源代码与仿真结果。其中&#xff0c;调制方式M-PSK包括BPSK、QPSK、8-PSK、16-PSK、32-PSK等方式。 一、MATLAB仿真 1.仿真代码 …...

【机器学习】机器学习的基本分类-监督学习-决策树-CART(Classification and Regression Tree)

CART&#xff08;Classification and Regression Tree&#xff09; CART&#xff08;分类与回归树&#xff09;是一种用于分类和回归任务的决策树算法&#xff0c;提出者为 Breiman 等人。它的核心思想是通过二分法递归地将数据集划分为子集&#xff0c;从而构建一棵树。CART …...

【金猿CIO展】复旦大学附属中山医院计算机网络中心副主任张俊钦:推进数据安全风险评估,防范化解数据安全风险,筑牢医疗数据安全防线...

‍ 张俊钦 本文由复旦大学附属中山医院计算机网络中心副主任张俊钦撰写并投递参与“数据猿年度金猿策划活动——2024大数据产业年度优秀CIO榜单及奖项”评选。 大数据产业创新服务媒体 ——聚焦数据 改变商业 数据要素时代&#xff0c;医疗数据已成为医院运营与决策的重要基石…...

工业机器视觉-基于深度学习的水表表盘读数识别

字轮数字识别、指针读数识别&#xff08;角度换算&#xff09;、根据指针角度进行读数修正、根据最高位指针(x0.1)读数对字轮数字进行修正、得到最终读数。 基于深度学习的目标检测技术和OpenCV图像处理技术&#xff0c;可识别所有类型的表盘机械读数。...