当前位置: 首页 > news >正文

yolov11剪枝

思路:yolov11中的C3k2与yolov8的c2f的不同,所以与之前yolov8剪枝有稍许不同;

后续:会将剪枝流程写全,以及增加蒸馏、注意力、改loss;

注意:

1.在代码105行修改pruning.get_threshold(yolo.model, 0.65),可以获得不同的剪枝率;

2.改代码放在训练代码同一页面下即可;

3.在最后修改文件夹地址来获得剪枝后的模型;

from ultralytics import YOLO
import torch
from ultralytics.nn.modules import Bottleneck, Conv, C2f, SPPF, Detect, C3k2
from torch.nn.modules.container import Sequential
import os# os.environ["CUDA_VISIBLE_DEVICES"] = "2"class PRUNE():def __init__(self) -> None:self.threshold = Nonedef get_threshold(self, model, factor=0.8):ws = []bs = []for name, m in model.named_modules():if isinstance(m, torch.nn.BatchNorm2d):w = m.weight.abs().detach()b = m.bias.abs().detach()ws.append(w)bs.append(b)print(name, w.max().item(), w.min().item(), b.max().item(), b.min().item())print()# keepws = torch.cat(ws)self.threshold = torch.sort(ws, descending=True)[0][int(len(ws) * factor)]def prune_conv(self, conv1: Conv, conv2: Conv):## Normal Pruninggamma = conv1.bn.weight.data.detach()beta = conv1.bn.bias.data.detach()keep_idxs = []local_threshold = self.thresholdwhile len(keep_idxs) < 8:  ## 若剩余卷积核<8, 则降低阈值重新筛选keep_idxs = torch.where(gamma.abs() >= local_threshold)[0]local_threshold = local_threshold * 0.5n = len(keep_idxs)# n = max(int(len(idxs) * 0.8), p)print(n / len(gamma) * 100)conv1.bn.weight.data = gamma[keep_idxs]conv1.bn.bias.data = beta[keep_idxs]conv1.bn.running_var.data = conv1.bn.running_var.data[keep_idxs]conv1.bn.running_mean.data = conv1.bn.running_mean.data[keep_idxs]conv1.bn.num_features = nconv1.conv.weight.data = conv1.conv.weight.data[keep_idxs]conv1.conv.out_channels = nif isinstance(conv2, list) and len(conv2) > 3 and conv2[-1]._get_name() == "Proto":proto = conv2.pop()proto.cv1.conv.in_channels = nproto.cv1.conv.weight.data = proto.cv1.conv.weight.data[:, keep_idxs]if conv1.conv.bias is not None:conv1.conv.bias.data = conv1.conv.bias.data[keep_idxs]## Regular Pruningif not isinstance(conv2, list):conv2 = [conv2]for item in conv2:if item is None: continueif isinstance(item, Conv):conv = item.convelse:conv = itemif isinstance(item, Sequential):conv1 = item[0]conv = item[1].convconv1.conv.in_channels = nconv1.conv.out_channels = nconv1.conv.groups = nconv1.conv.weight.data = conv1.conv.weight.data[keep_idxs, :]conv1.bn.bias.data = conv1.bn.bias.data[keep_idxs]conv1.bn.weight.data = conv1.bn.weight.data[keep_idxs]conv1.bn.running_var.data = conv1.bn.running_var.data[keep_idxs]conv1.bn.running_mean.data = conv1.bn.running_mean.data[keep_idxs]conv1.bn.num_features = nconv.in_channels = nconv.weight.data = conv.weight.data[:, keep_idxs]def prune(self, m1, m2):if isinstance(m1, C3k2):  # C3k2 as a top convm1 = m1.cv2if isinstance(m1, Sequential):m1 = m1[1]if not isinstance(m2, list):  # m2 is just one modulem2 = [m2]for i, item in enumerate(m2):if isinstance(item, C3k2) or isinstance(item, SPPF):m2[i] = item.cv1self.prune_conv(m1, m2)def do_pruning(modelpath, savepath):pruning = PRUNE()### 0. 加载模型yolo = YOLO(modelpath)  # build a new model from scratchpruning.get_threshold(yolo.model, 0.65)  # 这里的0.8为剪枝率。### 1. 剪枝C3k2 中的Bottleneckfor name, m in yolo.model.named_modules():if isinstance(m, Bottleneck):pruning.prune_conv(m.cv1, m.cv2)### 2. 指定剪枝不同模块之间的卷积核seq = yolo.model.modelfor i in [3, 5, 7, 8]:pruning.prune(seq[i], seq[i + 1])### 3. 对检测头进行剪枝# 在P3层: seq[15]之后的网络节点与其相连的有 seq[16]、detect.cv2[0] (box分支)、detect.cv3[0] (class分支)# 在P4层: seq[18]之后的网络节点与其相连的有 seq[19]、detect.cv2[1] 、detect.cv3[1]# 在P5层: seq[21]之后的网络节点与其相连的有 detect.cv2[2] 、detect.cv3[2]detect: Detect = seq[-1]proto = detect.protolast_inputs = [seq[16], seq[19], seq[22]]colasts = [seq[17], seq[20], None]for idx, (last_input, colast, cv2, cv3, cv4) in enumerate(zip(last_inputs, colasts, detect.cv2, detect.cv3, detect.cv4)):if idx == 0:pruning.prune(last_input, [colast, cv2[0], cv3[0], cv4[0], proto])else:pruning.prune(last_input, [colast, cv2[0], cv3[0], cv4[0]])pruning.prune(cv2[0], cv2[1])pruning.prune(cv2[1], cv2[2])pruning.prune(cv3[0], cv3[1])pruning.prune(cv3[1], cv3[2])pruning.prune(cv4[0], cv4[1])pruning.prune(cv4[1], cv4[2])### 4. 模型梯度设置与保存for name, p in yolo.model.named_parameters():p.requires_grad = Trueyolo.val(data='data.yaml', batch=2, device=0, workers=0)torch.save(yolo.ckpt, savepath)if __name__ == "__main__":modelpath = "runs/segment/Constraint/weights/best.pt"savepath = "runs/segment/Constraint/weights/last_prune.pt"do_pruning(modelpath, savepath)

相关文章:

yolov11剪枝

思路&#xff1a;yolov11中的C3k2与yolov8的c2f的不同&#xff0c;所以与之前yolov8剪枝有稍许不同&#xff1b; 后续&#xff1a;会将剪枝流程写全&#xff0c;以及增加蒸馏、注意力、改loss&#xff1b; 注意&#xff1a; 1.在代码105行修改pruning.get_threshold(yolo.mo…...

智慧地图聚合(LockMap)标注系统开发说明文档

智慧地图聚合(LockMap)标注系统开发说明文档 1. 系统概述 智慧地图聚合(LockMap)标注系统是一个专为处理大规模地理信息数据而设计的综合解决方案。通过后端高效的数据管理和前端直观的地图展示&#xff0c;该系统能够实现对海量地理位置点的有效可视化。本项目旨在提供一个用…...

「Mac畅玩鸿蒙与硬件36」UI互动应用篇13 - 数字滚动抽奖器

本篇将带你实现一个简单的数字滚动抽奖器。用户点击按钮后&#xff0c;屏幕上的数字会以滚动动画的形式随机变动&#xff0c;最终显示一个抽奖数字。这个项目展示了如何结合定时器、状态管理和动画实现一个有趣的互动应用。 关键词 UI互动应用数字滚动动画效果状态管理用户交…...

cuda12.1版本的pytorch环境安装记录,并添加到jupyter和pycharm中

文章目录 前置准备使用anaconda prompt创建虚拟环境创建虚拟环境激活pytorch虚拟环境把pytorch下载到本地使用pip把安装包安装到pytorch环境中进入python环境检验是否安装成功将环境添加到jupyter在pycharm中使用该环境&#xff1a; 前置准备 安装anaconda&#xff0c;我的版本…...

Linux: network: nic: mellanox MRU初现

文章目录 在PPP协议了有提到过总结-吐槽MRU初现兼容问题详细的MRU的计算幸运下面这个commit缩小了幸运机会So在PPP协议了有提到过 MRU在RFC4638里有提到。但是在Linux内核里是的Ethernet是没有相关的概念。 总结-吐槽 说Mellanox的网卡驱动在2018年做了一个对进入packet的大…...

深入理解红黑树的底层逻辑

一、红黑树的定义 红黑树是一种自平衡的二叉查找树&#xff0c;每个节点都带有额外的颜色信息&#xff0c;可以是红色或黑色。红黑树的目的是通过引入颜色信息来确保树的平衡&#xff0c;从而提高查找、插入和删除等操作的效率。 二、红黑树的性质 每个节点都有颜色&#xf…...

【数据结构】手搓链表

一、定义 typedef struct node_s {int _data;struct node_s *_next; } node_t;typedef struct list_s {node_t *_head;node_t *_tail; } list_t;节点结构体&#xff08;node_s&#xff09;&#xff1a; int _data;存储节点中的数据struct node_s *_next;&#xff1a;指向 node…...

ThinkPHP场景动态验证

一、缘由 今天在用thinkphp8写东西的时候发现&#xff0c;写验证器规则和场景优点费时间&#xff0c;就算用tinkphp的命令行生成也是生成一个空壳。内容还是要自己填写感觉麻烦。 就突发奇想能不能自动生成验证器&#xff0c;也不能是说自动生成验证器&#xff0c;生成验证其的…...

在M3上面搭建一套lnmp环境

下载docker-desktop 官网下载docker-desktop 切换镜像源 {"builder": {"gc": {"defaultKeepStorage": "20GB","enabled": true}},"experimental": false,"registry-mirrors": ["https://docke…...

【C++笔记】二叉搜索树

前言 各位读者朋友们大家好&#xff01;上期我们讲完了面向对象编程三大属性之一的多态&#xff0c;这一期我们再次开始数据结构二叉搜索树的讲解。 目录 前言一. 二叉搜索树的概念二. 二叉搜索树的性能分析三. 二叉搜索树的插入四. 二叉搜索树的查找五. 二叉搜索树的删除六.…...

Fork/Join框架简介

一、Fork/Join框架简介 Fork/Join框架是Java 7引入的一个用于并行执行任务的框架&#xff0c;它可以将一个大任务分割成若干个小任务&#xff0c;并行执行这些小任务&#xff0c;然后将每个小任务的结果合并起来&#xff0c;得到大任务的结果。这种框架特别适合于能够被递归分…...

Java项目实战II基于微信小程序的电子竞技信息交流平台的设计与实现(开发文档+数据库+源码)

目录 一、前言 二、技术介绍 三、系统实现 四、核心代码 五、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 随着互联网技术的飞速发展…...

Mysql读写分离分库分表

读写分离 什么是读写分离 读写分离主要是为了将对数据库的读写操作分散到不同的数据库节点上。 这样的话&#xff0c;就能够小幅提升写性能&#xff0c;大幅提升读性能。一般情况下&#xff0c;我们都会选择一主多从&#xff0c;也就是一台主数据库负责写&#xff0c;其他的从…...

B站狂神说--springboot项目学习(新建一个springboot项目)

文章目录 1.新建项目java8项目1.解决自带的idea2024无法使用java8的问题 2.新建接口3.项目打包为jar包4.使用jar包 1.新建项目java8项目 1.解决自带的idea2024无法使用java8的问题 将server.url修改为阿里云的地址&#xff1a;https://start.aliyun.com/ 选择Spring Web 创建…...

eltable el-table 横向 滚动条常显

又遇到了难受的问题&#xff0c;el-table嵌入在一个div里面&#xff0c;结果因为内容太多,横向、纵向我都得滚动查看&#xff01; 结果发现横向滚动时只能让它纵向触底后才能进行横向操作&#xff0c;这就很变态&#xff0c;明显不符合用户操作习惯。如下图&#xff1a; 要先纵…...

centos8 mysql 主从复制

原理 一、一主一从 准备工作 1.主库配置 1、修改配置文件 /etc/my.cnf #mysql 服务ID&#xff0c;保证整个集群环境中唯一&#xff0c;取值范围:1-232-1&#xff0c;默认为 server-id1 #是否只读,1 代表只读,0代表读写 read-only0 #忽略的数据,指不需要同步的数据库 #binlog…...

【C++】入门【五】

本节目标 一、C/C内存分布 二、C语言中动态内存管理方式 三、C中动态内存管理 四、operator new与operator delete函数 五、new和delete的实现原理 六、定位new表达式(placement-new) 七、常见面试题 一、C/C内存分布 一个程序占用的内存主要有以下几部分栈区&#xff08;stac…...

【React】二、状态变量useState

文章目录 1、React中的事件绑定1.1 基础事件绑定1.2 使用事件对象参数1.3 传递自定义参数1.4 同时传递事件对象和自定义参数 2、React中的组件3、useState 1、React中的事件绑定 1.1 基础事件绑定 语法&#xff1a;on 事件名称 { 事件处理程序 }&#xff0c;整体上遵循驼峰…...

SQL Server中的数据处理函数:提升SQL查询能力

文章目录 前言1. 数据类型转换函数CAST()CONVERT()TRY_CAST() 和 TRY_CONVERT() 2. 数学函数ABS()CEILING()FLOOR()ROUND()POWER()SQRT() 3. 日期和时间函数GETDATE()SYSDATETIME()DATEADD()DATEDIFF()YEAR()、MONTH() 和 DAY()FORMAT() 4. 条件处理函数CASEIIF() 总结 前言 在…...

TypeScript 语言学习入门级教程五

在前面的教程中&#xff0c;我们已经逐步深入地学习了 TypeScript 的诸多特性&#xff0c;包括基础语法、类型系统、面向对象编程、装饰器以及一些高级类型等。在本教程中&#xff0c;我们将聚焦于 TypeScript 的模块系统、命名空间与模块的关系、声明文件以及如何在实际项目中…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

MySQL的pymysql操作

本章是MySQL的最后一章&#xff0c;MySQL到此完结&#xff0c;下一站Hadoop&#xff01;&#xff01;&#xff01; 这章很简单&#xff0c;完整代码在最后&#xff0c;详细讲解之前python课程里面也有&#xff0c;感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...

macOS 终端智能代理检测

&#x1f9e0; 终端智能代理检测&#xff1a;自动判断是否需要设置代理访问 GitHub 在开发中&#xff0c;使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新&#xff0c;例如&#xff1a; fatal: unable to access https://github.com/ohmyzsh/oh…...

2.3 物理层设备

在这个视频中&#xff0c;我们要学习工作在物理层的两种网络设备&#xff0c;分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间&#xff0c;需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质&#xff0c;假设A节点要给…...

【iOS】 Block再学习

iOS Block再学习 文章目录 iOS Block再学习前言Block的三种类型__ NSGlobalBlock____ NSMallocBlock____ NSStackBlock__小结 Block底层分析Block的结构捕获自由变量捕获全局(静态)变量捕获静态变量__block修饰符forwarding指针 Block的copy时机block作为函数返回值将block赋给…...

当下AI智能硬件方案浅谈

背景&#xff1a; 现在大模型出来以后&#xff0c;打破了常规的机械式的对话&#xff0c;人机对话变得更聪明一点。 对话用到的技术主要是实时音视频&#xff0c;简称为RTC。下游硬件厂商一般都不会去自己开发音视频技术&#xff0c;开发自己的大模型。商用方案多见为字节、百…...