当前位置: 首页 > news >正文

mmdection配置-yolo转coco

基础配置看我的mmsegmentation。
也可以参考b站 :https://www.bilibili.com/video/BV1xA4m1c7H8/?vd_source=701421543dabde010814d3f9ea6917f6#reply248829735200

这里面最大的坑就是配置coco数据集。我一般是用yolo,这个yolo转coco格式很难搞定,mmdection需要 coco格式的!
下面展示一些 内联代码片

import os
import json
from PIL import Image# 你的路径定义
coco_format_save_path = r'C:\Users\ZhuanZ\Desktop\mmdetection-main\mmdetection-main\co'
yolo_format_annotation_path = r'C:\Users\ZhuanZ\Desktop\mmdetection-main\mmdetection-main\co\labels\test'
img_pathDir = r'C:\Users\ZhuanZ\Desktop\mmdetection-main\mmdetection-main\co\images\test'# 类别映射和其他初始化代码  该代码相对于其他版本用户可以自定义在以下修改类别而不需要额外调用外部文件
categories_mapping = ['0',]
categories = [{'id': i + 1, 'name': label, 'supercategory': 'None'} for i, label in enumerate(categories_mapping)]write_json_context = {'info': {'description': '', 'url': '', 'version': '', 'year': 2024, 'contributor': '','date_created': '2024-02-16'},'licenses': [{'id': 1, 'name': 0, 'url': None}],'categories': categories,'images': [],'annotations': []
}imageFileList = os.listdir(img_pathDir)
for i, imageFile in enumerate(imageFileList):imagePath = os.path.join(img_pathDir, imageFile)image = Image.open(imagePath)W, H = image.sizeimg_context = {'file_name': imageFile, 'height': H, 'width': W,'date_captured': '2021-07-25', 'id': i,'license': 1, 'color_url': '', 'flickr_url': ''}write_json_context['images'].append(img_context)txtFile = os.path.splitext(imageFile)[0] + '.txt'  # 修改以正确处理文件名 获取该图片获取的txt文件  # 和其他人写的代码区别是可以保证文件被找到with open(os.path.join(yolo_format_annotation_path, txtFile), 'r') as fr:lines = fr.readlines()  # 读取txt文件的每一行数据,lines是一个列表,包含了一个图片的所有标注信息# 重新引入循环中的enumerate函数for j, line in enumerate(lines):  # 这里使用enumerate确保j被正确定义parts = line.strip().split(' ')if len(parts) >= 5:  # 确保至少有5个部分    # 这里需要注意,yolo格式添加额外的内容容易报错,所以需要你只要前面的主要信息class_id, x, y, w, h = map(float, parts[:5])  # 只读取前五个值xmin = (x - w / 2) * W  # 坐标转换ymin = (y - h / 2) * Hxmax = (x + w / 2) * Wymax = (y + h / 2) * Hbbox_width, bbox_height = w * W, h * Hbbox_dict = {'id': i * 10000 + j,  # 使用j,它现在被enumerate定义'image_id': i,'category_id': class_id + 1,  # 注意目标类别要加一'iscrowd': 0,'area': bbox_width * bbox_height,'bbox': [xmin, ymin, bbox_width, bbox_height],'segmentation': [[xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax]]}write_json_context['annotations'].append(bbox_dict)
name = os.path.join(coco_format_save_path, "test.json")    #这里改一下,是train就train.json,val就val.json
with open(name, 'w') as fw:json.dump(write_json_context, fw, indent=2)

配置环境时候一定cd到mmdection文件夹下在这里插入图片描述

pip install -v -e .

在这里插入图片描述
我创建的是configs/tood下面的。
在这里插入图片描述
mytood继承 base = ‘./tood_r50_fpn_1x_coco.py’ 按需配置即可,需要就配置,不需要自己会继承的!

_base_ = './tood_r50_fpn_1x_coco.py'
model = dict(bbox_head=dict(num_classes=1,   #这里要改,你识别的类别是几个,也就是yolo文件里的class。txt 文件中类别数量),)
data_root = r''
metainfo = {'classes': ('0',),  #这里就是你数据集打的标签'palette': [(220, 20, 60),   #这是边框的颜色]
}
train_dataloader = dict(batch_size=1,dataset=dict(data_root=data_root,metainfo=metainfo,ann_file=r'C:\Users\ZhuanZ\Desktop\mmdetection-main\mmdetection-main\co\train.json',  #coco的json文件data_prefix=dict(img=r'C:\Users\ZhuanZ\Desktop\mmdetection-main\mmdetection-main\co\images\train'))) #训练集图片的地址
val_dataloader = dict(dataset=dict(data_root=data_root,metainfo=metainfo,ann_file=r'C:\Users\ZhuanZ\Desktop\mmdetection-main\mmdetection-main\co\val.json',data_prefix=dict(img=r'C:\Users\ZhuanZ\Desktop\mmdetection-main\mmdetection-main\co\images\val')))
test_dataloader = dict(dataset=dict(data_root=data_root,metainfo=metainfo,ann_file=r'C:\Users\ZhuanZ\Desktop\mmdetection-main\mmdetection-main\co\test.json',data_prefix=dict(img=r'C:\Users\ZhuanZ\Desktop\mmdetection-main\mmdetection-main\co\images\test')))# 修改评价指标相关配置
val_evaluator = dict(ann_file=data_root + r'C:\Users\ZhuanZ\Desktop\mmdetection-main\mmdetection-main\co\test.json')
test_evaluator = val_evaluator
load_from=r'C:\Users\ZhuanZ\Desktop\tood_r50_fpn_1x_coco_20211210_103425-20e20746.pth'  #基层类的权重文件,官网可以下载
default_hooks = dict(
#这几个钩子文件,是在mmdetection-main/configs/_base_/default_runtime.py这里配置的,具体要什么,gpt搜一下代码功能按需配置即可。timer=dict(type='IterTimerHook'),# logger=dict(type='LoggerHook', interval=50),param_scheduler=dict(type='ParamSchedulerHook'),checkpoint=dict(type='CheckpointHook', interval=1),sampler_seed=dict(type='DistSamplerSeedHook'),visualization=dict(type='DetVisualizationHook'))

然后train.py配置
在这里插入图片描述

形参指向mytood,也就是我们自己配置的数据集。

train玩之后,会在mmdetection-main/tools/work_dirs/mytood/epoch_12.pth出现pth,目前我还不知道如何保存最优权重,这个权重就是咱们训练好的模型。

然后预测:用jupter网络编译器运行。

from mmdet.apis import DetInferencer# Choose to use a config
model_name = r"C:\Users\ZhuanZ\Desktop\mmdetection-main\mmdetection-main\configs\tood\mytood.py"
# Setup a checkpoint file to load
checkpoint = r"C:\Users\ZhuanZ\Desktop\mmdetection-main\mmdetection-main\tools\work_dirs\mytood\epoch_12.pth"# Set the device to be used for evaluation
device = 'cuda:0'# Initialize the DetInferencer
inferencer = DetInferencer(model_name, checkpoint, device)# Use the detector to do inference
img =  r"C:\Users\ZhuanZ\Desktop\1d0d5b0ea6d1c165d471d7365686be4.jpg"
result = inferencer(img, out_dir='./output')

在这里插入图片描述
执行即可预测

相关文章:

mmdection配置-yolo转coco

基础配置看我的mmsegmentation。 也可以参考b站 :https://www.bilibili.com/video/BV1xA4m1c7H8/?vd_source701421543dabde010814d3f9ea6917f6#reply248829735200 这里面最大的坑就是配置coco数据集。我一般是用yolo,这个yolo转coco格式很难搞定&#…...

聚合支付系统/官方个人免签系统/三方支付系统稳定安全高并发 附教程

聚合支付系统/官方个人免签系统/三方支付系统稳定安全高并发 附教程 系统采用FastAdmin框架独立全新开发,安全稳定,系统支持代理、商户、码商等业务逻辑。 针对最近一些JD,TB等业务定制,子账号业务逻辑API 非常详细,方便内置…...

力扣67. 二进制求和

给你两个二进制字符串 a 和 b ,以二进制字符串的形式返回它们的和。 示例 1: 输入:a "11", b "1" 输出:"100" 示例 2: 输入:a "1010", b "1011" 输出&#…...

网络安全中的 SOC 是什么?

当今世界,网络威胁日益增多,确保网络安全已成为各种规模企业的首要任务。网络安全讨论中经常出现的一个术语是 SOC,即安全运营中心的缩写。但网络安全中的 SOC 是什么呢? SOC在防御网络威胁、管理安全事件和全天候监控系统方面发…...

16、鸿蒙学习——Visibility与(if...else)该如何选择

在鸿蒙中我们如果要控制一个组件的显示与隐藏可以设置组件的Visibility属性,也可使用(if...else)条件控制,具体我们该选择哪个?二者有什么区别呢? 1、Visibility 名称描述Hidden隐藏,但参与布局…...

PH热榜 | 2024-12-05

1. Oopsie 标语:用AI和会话回放调试Flutter和React Native应用 介绍:Zipy推出的Oopsie是一款你唯一需要的AI赋能移动端调试工具,它能提供▶️会话回放、🤖错误监控、💡AI生成的概要分析,以及&#x1f525…...

Qt Chart 模块化封装曲线图

一 版本说明 二 完成示例 此文章包含:曲线轴设置,曲线切换,单条曲线显示,坐标轴。。。 三 曲线图UI创建 在UI界面拖放一个QWidget,然后在 Widget里面放一个 graphicsView 四 代码介绍 1 头文件 #include <QString> #include <QTimer> #include <QMessa…...

【AI系统】MobileFormer

MobileFormer 在本文中&#xff0c;将介绍一种新的网络-MobileFormer&#xff0c;它实现了 Transformer 全局特征与 CNN 局部特征的融合&#xff0c;在较低的成本内&#xff0c;创造一个高效的网络。通过本节&#xff0c;让大家去了解如何将 CNN 与 Transformer 更好的结合起来…...

python数据分析之爬虫基础:解析

目录 1、xpath 1.1、xpath的安装以及lxml的安装 1.2、xpath的基本使用 1.3、xpath基本语法 2、JsonPath 2.1、jsonpath的安装 2.2、jsonpath的使用 2.3、jsonpath的基础语法 3、BeautifulSoup 3.1、bs4安装及创建 3.2、beautifulsoup的使用 3.3、beautifulsoup基本语…...

uniapp中导入uview或者uview plus

关于SCSS uview-plus依赖SCSS&#xff0c;您必须要安装此插件&#xff0c;否则无法正常运行。 如果您的项目是由HBuilder X创建的&#xff0c;相信已经安装scss插件&#xff0c;如果没有&#xff0c;请在HX菜单的 工具->插件安装中找到"scss/sass编译"插件进行安…...

【LeetCode】122.买卖股票的最佳时机II

文章目录 题目链接&#xff1a;题目描述&#xff1a;解题思路一&#xff08;贪心算法&#xff09;&#xff1a;解体思路二&#xff08;动态规划&#xff09;&#xff1a; 题目链接&#xff1a; 122.买卖股票的最佳时机II 题目描述&#xff1a; 解题思路一&#xff08;贪心算法…...

openGauss开源数据库实战十九

文章目录 任务十九 openGauss DML 语句测试任务目标实施步骤一、准备工作二、INSERT语句三、DELETE语句四、UPDATE语句五、清理工作 任务十九 openGauss DML 语句测试 任务目标 掌握DML语句的用法,包括INSERT语句、DELETE语句和UPDATE语句。 实施步骤 一、准备工作 使用Li…...

恶补英语初级第18天,《询问他人的喜好(上)》

对话 Do you like coffee? Yes, I do. Do you want a cup? Yes, please. Do you want any sugar? Yes, please. Do you want any milk? No, thank you. I don’t like milk in my coffee, I like black coffee. Do you like biscuits? Yes, I do. Do you want one? Yes, …...

centos 报 ping: www.baidu.com: Name or service not known

[rootlocalhost ~]$ ping www.baidu.com ping: www.baidu.com: Name or service not known解决办法&#xff1a; 首先要求检查特定文件&#xff08;/etc/resolv.conf&#xff09;内是否正确配置了 DNS sudo vim /etc/resolv.conf没有正确配置可以添加如下代码&#xff1a; n…...

Python:使用随机森林分类器进行模型评估:ROC 曲线与 AUC 指标计算

前言 这段代码的目标是使用 随机森林分类器&#xff08;Random Forest Classifier&#xff09; 来进行二分类任务&#xff0c;并基于每个数据子集计算 ROC 曲线&#xff08;Receiver Operating Characteristic Curve&#xff09;以及 AUC&#xff08;Area Under Curve&#xf…...

数据库表约束完全指南:提升数据完整性和准确性

数据库表约束完全指南&#xff1a;提升数据完整性和准确性 在数据库设计中&#xff0c;表约束是确保数据完整性和准确性的关键工具。本文将详细介绍各种类型的表约束及其使用方法&#xff0c;包括非空约束、唯一约束、主键约束、外键约束、默认值约束、检查约束以及自动递增约…...

【JavaEE】多线程(6)

一、用户态与内核态 【概念】 用户态是指用户程序运行时的状态&#xff0c;在这种状态下&#xff0c;CPU只能执行用户态下的指令&#xff0c;并且只能访问受限的内存空间 内核态是操作系统内核运行时的状态&#xff0c;内核是计算机系统的核心部分&#xff0c;CPU可以执行所有…...

BERT和RoBERTa;双向表示与单向的简单理解

目录 BERT和RoBERTa大型预训练语言模型 BERT的原理 RoBERTa的原理 举例说明 双向表示与单向的简单理解 除了预训练语言模型,还有什么模型 一、模型类型与结构 二、训练方式与数据 三、应用场景与功能 四、技术特点与优势 BERT和RoBERTa大型预训练语言模型 BERT(Bi…...

Pytorch使用手册-计算机视觉迁移学习教程(专题十三)

在本教程中,你将学习如何使用迁移学习训练一个卷积神经网络进行图像分类。更多关于迁移学习的内容可以参考 CS231n 课程笔记。 引用课程笔记中的内容: 实际上,很少有人从头开始训练一个完整的卷积网络(随机初始化),因为拥有足够大数据集的情况相对罕见。相反,通常会在非…...

Jackson - Java对象与JSON相互转换

在这篇文章中&#xff0c;我将向您展示如何使用Jackson-databind API来实现Java对象与JSON之间的绑定&#xff0c;以及如何将JSON数据转换为Java对象。 对于Java开发者来说&#xff0c;将JSON转换为Java对象及反向操作是一个常见的任务&#xff0c;因此我将通过示例演示如何完…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...