【机器学习】机器学习的基本分类-监督学习-决策树-ID3 算法
ID3(Iterative Dichotomiser 3)是决策树的一种构造算法,由 Ross Quinlan 在 1986 年提出。它主要用于分类问题,通过信息增益选择特征来构建决策树。ID3 假设数据是离散型特征,且不支持连续型数据。
1. 核心思想
-
划分标准:
- 使用 信息增益(Information Gain)作为特征选择的标准。
- 选择信息增益最大的特征进行分裂。
-
递归构造:
- 从根节点开始,每次根据信息增益选择特征,生成子节点。
- 对每个子节点重复这一过程,直到满足停止条件(例如数据不可再分,或者所有样本类别相同)。
2. 信息增益
信息增益基于**信息熵(Entropy)**的概念:
信息熵的定义
信息熵衡量数据集的不确定性:
- D:数据集。
- C:类别数。
:数据集中属于第 i 类的概率。
条件熵
划分数据集 D 后的条件熵为:
- A:划分特征。
:特征 A 的值为 v 时的子数据集。
:数据划分到 v 类的比例。
信息增益公式
信息增益是划分前后信息熵的减少:
- H(D):划分前的熵。
- H(D|A):划分后的条件熵。
- 特征 A 的信息增益越大,说明使用 A 划分后数据集的不确定性降低越多,划分效果越好。
3. ID3 算法步骤
-
输入:
- 数据集 D(包含样本和对应的类别标签)。
- 特征集 A。
-
步骤:
- 计算当前数据集的熵 H(D)。
- 对于每个特征 A ∈ A:
- 计算特征 A 的信息增益 IG(D, A)。
- 选择信息增益最大的特征
,作为当前节点的分裂特征。
- 根据特征
的每个取值 v,划分数据集:
- 如果子数据集
为空,设置叶节点为多数类别。
- 如果子数据集
非空,递归构造子树。
- 如果子数据集
- 当满足停止条件时,停止分裂。
-
输出:
- 决策树。
4. 算法特点
优点
- 简单易实现:基于熵和信息增益的数学原理,计算相对直观。
- 解释性强:生成的决策树规则可以直接解释分类依据。
缺点
- 对连续特征无直接支持:需要离散化连续特征。
- 易过拟合:树可能过于复杂,适应训练数据的噪声。
- 偏好多值特征:特征的可能取值越多,信息增益往往越高,可能导致模型偏向这些特征。
5. 示例
数据示例
假设有以下样本数据:
| 天气 | 温度 | 湿度 | 风力 | 是否运动 |
|---|---|---|---|---|
| 晴天 | 高 | 高 | 弱 | 否 |
| 晴天 | 高 | 高 | 强 | 否 |
| 阴天 | 高 | 高 | 弱 | 是 |
| 雨天 | 中 | 高 | 弱 | 是 |
| 雨天 | 低 | 正常 | 弱 | 是 |
目标:构造决策树判断是否运动。
计算步骤
-
计算根节点的熵 H(D) 数据集中是否运动的比例为:
- P(是) = 3/5, P(否) = 2/5。
熵为:
- P(是) = 3/5, P(否) = 2/5。
-
计算每个特征的条件熵 H(D|A) 和信息增益
-
天气(Weather):
。
- 对所有天气取值加权计算条件熵,得到
。
- 信息增益
。
-
温度(Temperature):
- 类似方法计算温度的条件熵和信息增益。
-
湿度、风力:
- 按相同方法计算。
-
-
选择信息增益最大的特征:
- 设
,构造根节点。
- 设
-
递归分裂子数据集:
- 对子数据集重复计算,直到满足停止条件。
6. 代码实现
Python 示例
from math import log2# 计算熵
def entropy(labels):total = len(labels)counts = {}for label in labels:counts[label] = counts.get(label, 0) + 1return -sum((count / total) * log2(count / total) for count in counts.values())# 计算信息增益
def information_gain(data, labels, feature_index):total_entropy = entropy(labels)feature_values = [row[feature_index] for row in data]unique_values = set(feature_values)conditional_entropy = 0for value in unique_values:subset = [labels[i] for i in range(len(data)) if data[i][feature_index] == value]conditional_entropy += (len(subset) / len(data)) * entropy(subset)return total_entropy - conditional_entropy# 示例数据
data = [["晴天", "高", "高", "弱"],["晴天", "高", "高", "强"],["阴天", "高", "高", "弱"],["雨天", "中", "高", "弱"],["雨天", "低", "正常", "弱"]
]
labels = ["否", "否", "是", "是", "是"]# 特征索引(天气、温度、湿度、风力)
for i in range(4):print(f"Feature {i}, Information Gain: {information_gain(data, labels, i):.4f}")
输出结果
Feature 0, Information Gain: 0.9710
Feature 1, Information Gain: 0.4200
Feature 2, Information Gain: 0.1710
Feature 3, Information Gain: 0.3219
7. 扩展
-
C4.5 算法:
- 使用信息增益比替代信息增益,解决偏好多值特征问题。
- 支持连续型特征。
-
CART 算法:
- 支持分类与回归,使用基尼指数或均方误差。
ID3 是决策树的早期版本,适用于简单的分类问题,但由于其限制(如无法处理连续型特征、易过拟合),后续算法(如 C4.5 和 CART)进一步改进了 ID3。
相关文章:
【机器学习】机器学习的基本分类-监督学习-决策树-ID3 算法
ID3(Iterative Dichotomiser 3)是决策树的一种构造算法,由 Ross Quinlan 在 1986 年提出。它主要用于分类问题,通过信息增益选择特征来构建决策树。ID3 假设数据是离散型特征,且不支持连续型数据。 1. 核心思想 划分标…...
Implicit style-content separation using lora
1.Introduction 图像风格化,这个任务涉及根据某些风格参考改编图像的风格,这些参考可以是基于文本或基于图像的,同时保持其内容不变,内容指的是图像的语义信息和结构,而风格通常指的是视觉特征和模式,例如颜色和纹理。这是一个有挑战的任务,因为风格和内容之间的强关联…...
ROS[aruco_ros+easy_handeye]手眼标定(眼在手外+UR10e+realsense-d435i)
参考链接: https://zhuanlan.zhihu.com/p/576861119 https://blog.csdn.net/qq_32618327/article/details/120730198 本次在Docker中使用 打印Aruco码:https://chev.me/arucogen/ 选择Dictionary为 Original ArUco(aruco_ros默认这个,如果…...
第九篇:k8s 通过helm发布应用
什么是helm? Helm 是 Kubernetes 的包管理器。Helm 是查找、分享和使用软件构建 Kubernetes 的最优方式。 在红帽系的Linux中我们使用yum来管理RPM包,类似的,在K8s中我们可以使用helm来管理资源对象(Deployment、Service、Ingress…...
dataTable
在 C# 中,DataTable 是 .NET Framework 中用于处理数据表格的一个类,属于 System.Data 命名空间。它是一种内存中表示数据表的结构,通常用于临时存储和操作数据,类似于数据库中的表。DataTable 的主要特点是行列结构,其…...
json+Tomact项目报错怎么办?
在响应请求的时候,如果http响应没有指定响应数据的content-type,浏览器就不知道按照什么格式解析响应体的数据,因为浏览器只知道怎样解析http的行和头,再从头里获取响应体的字节长度和类型,按照你给的长度去截流&#…...
Flume——sink连接Hive的参数配置(属性参数)
目录 配置文件官网属性参数例子 配置文件官网 可以参考官网的说明 属性参数 属性名默认值说明type无(必须指定)组件类型名称,必须是"hive"hive.metastore无(必须指定)元数据仓库地址,例如&…...
Netty面试内容整理-Netty 的应用场景
Netty 是一个高性能、异步的事件驱动网络框架,广泛应用于各种需要高并发、高吞吐量的网络通信场景。以下是 Netty 的常见应用场景: RPC 框架 ● 应用描述: ○ 远程过程调用(RPC)框架用于跨网络调用远程服务,就像调用本地方法一样。 ○...
波特图方法
在电路设计中,波特图为最常用的稳定性余量判断方法,波特图的根源是如何来的,却鲜有人知。 本章节串联了奈奎斯特和波特图的渊源,给出了其对应关系和波特图相应的稳定性余量。 理论贯通,不在于精确绘…...
服务器数据恢复—硬盘掉线导致热备盘同步失败的RAID5阵列数据恢复案例
服务器存储数据恢复环境: 华为S5300存储中有12块FC硬盘,其中11块硬盘作为数据盘组建了一组RAID5阵列,剩下的1块硬盘作为热备盘使用。基于RAID的LUN分配给linux操作系统使用,存放的数据主要是Oracle数据库。 服务器存储故障&#…...
在Ubuntu中运行和管理AppImage
文章目录 什么是AppImage?如何在Ubuntu中运行AppImage?如何管理AppImage?安装AppImageLauncher如何添加AppImage到系统?如何从系统中移除AppImage? 总结 什么是AppImage? AppImage是一种将应用程序打包为单…...
如何查看电脑的屏幕刷新率?
1、按一下键盘的 win i 键,打开如下界面,选择【系统】: 2、选择【屏幕】-【高级显示设置】 如下位置,显示屏幕的刷新率:60Hz 如果可以更改,则选择更高的刷新率,有助于电脑使用起来界面更加流…...
浏览器数据存储方法深度剖析:LocalStorage、IndexedDB、Cookies、OPFS 与 WASM - SQLite
在当今的 Web 开发领域,选择合适的浏览器数据存储方法对于构建高效、功能丰富的应用程序至关重要。随着 Web 应用的不断演进,从早期的静态 HTML 页面到如今复杂的单页应用和本地优先应用,数据存储需求也日益多样化。本文将深入探讨 LocalStor…...
面向金融场景的大模型 RAG 检索增强解决方案
概述 在现代信息检索领域,检索增强生成(Retrieval-Augmented Generation, RAG)模型结合了信息检索与生成式人工智能的优点,从而在特定场景下提供更为精准和相关的答案。在特定场景下,例如金融等领域,用户通…...
经典蓝牙(BT/EDR)蓝牙配对与连接
经典蓝牙的连接过程包括跳频,扫描,配置交换等过程。对ACL链路以及sco的连接过程也做详细的分析。 1. 为什么不配对便无法建立连接? 任何无线通信技术都存在被监听和破解的可能,蓝牙SIG为了保证蓝牙通信的安全性,采用…...
Flask: flask框架是如何实现非阻塞并发的
写在前面:Flask框架是通过多线程/多进程+阻塞的socket实现非阻塞,其本质是基于python的源库socketserver实现的 前言 认识WSGI协议 认识Werkzeug flask是如何实现非阻塞的 本文使用的flask框架为最新的1.1.1版本,所有代码基于python3运行 一:前言 使用过flask或者其他web框…...
JAVA |日常开发中连接Oracle数据库详解
JAVA |日常开发中连接Oracle数据库详解 前言一、Oracle 数据库概述1.1 定义与特点1.2 适用场景 二、Java 连接 Oracle 数据库的准备工作2.1 添加 Oracle JDBC 驱动依赖2.2 了解连接信息 三、建立数据库连接3.1 代码示例(使用服务名)3.2 步骤解…...
头歌 进程管理之二(wait、exec、system的使用)
第1关:进程等待 任务描述 通过上一个实训的学习,我们学会了使用fork创建子进程,在使用fork创建子进程的时候,子进程和父进程的执行顺序是无法预知的。本关我们将介绍如何使得fork创建出来的子进程先执行,随后父进程再…...
详解日志格式配置:XML 与 Spring Boot 配置文件格式
详解日志格式配置:XML 与 Spring Boot 配置文件格式 日志是现代应用程序中不可或缺的一部分,通过定制化日志格式和颜色,开发人员可以更方便地调试和监控应用。本文将深入讲解如何在 XML 配置文件 和 Spring Boot 配置文件 中设置日志格式&am…...
JDK21新特性
目录 虚拟线程(JEP 444): 顺序集合(JEP 431): 字符串模板(JEP 430): 模式匹配的增强(JEP 440、441以及443): 结构化并发和作用域值…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
pycharm 设置环境出错
pycharm 设置环境出错 pycharm 新建项目,设置虚拟环境,出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...
C++--string的模拟实现
一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现,其目的是加强对string的底层了解,以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量,…...
React核心概念:State是什么?如何用useState管理组件自己的数据?
系列回顾: 在上一篇《React入门第一步》中,我们已经成功创建并运行了第一个React项目。我们学会了用Vite初始化项目,并修改了App.jsx组件,让页面显示出我们想要的文字。但是,那个页面是“死”的,它只是静态…...
C#最佳实践:为何优先使用as或is而非强制转换
C#最佳实践:为何优先使用as或is而非强制转换 在 C# 的编程世界里,类型转换是我们经常会遇到的操作。就像在现实生活中,我们可能需要把不同形状的物品重新整理归类一样,在代码里,我们也常常需要将一个数据类型转换为另…...
华为云Flexus+DeepSeek征文 | 基于Dify构建具备联网搜索能力的知识库问答助手
华为云FlexusDeepSeek征文 | 基于Dify构建具备联网搜索能力的知识库问答助手 一、构建知识库问答助手引言二、构建知识库问答助手环境2.1 基于FlexusX实例的Dify平台2.2 基于MaaS的模型API商用服务 三、构建知识库问答助手实战3.1 配置Dify环境3.2 创建知识库问答助手3.3 使用知…...
