R语言 | 峰峦图 / 山脊图
目的:为展示不同数据分布的差异。
1. ggplot2 实现
# 准备数据
dat=mtcars[, c("mpg", "cyl")]
colnames(dat)=c("value", "type")
head(dat)
# value type
#Mazda RX4 21.0 6
#Mazda RX4 Wag 21.0 6
#Datsun 710 22.8 4
cols=c("#F71480", "#76069A", "#FF8000")
#
p1=ggplot(dat, aes(x = value, fill = as.factor(type) ) ) +geom_density(alpha = 0.8) +scale_fill_manual(values = cols)+facet_wrap(~type, ncol=1) + # 按气缸数分面labs(title = "Density of MPG by Cylinder Count-A",x = "Miles Per Gallon (MPG)",y = "Density",fill = "Cylinders") +theme_classic(base_size = 14)+theme(strip.background = element_blank(), # 去掉小标题背景strip.placement = "outside");p1 # 小标题外部显示
#
p2=ggplot(dat, aes(x = value, fill = as.factor(type) ) ) +geom_density(alpha = 0.8) +scale_fill_manual(values = cols)+facet_wrap(~type, ncol=1, scales="free_y") + # 按气缸数分面labs(title = "Density of MPG by Cylinder Count-B",x = "Miles Per Gallon (MPG)",y = "Density",fill = "Cylinders") +theme_classic(base_size = 14)+theme(strip.background = element_blank(), # 去掉小标题背景strip.placement = "outside"); p2 # 小标题外部显示
#

2. 使用R包 ggridges
图放这里,方便和上图类似。

library(ggridges)
pB=ggplot(dat, aes(x = value, y = type, fill = factor(type, levels = c("4", "6", "8")) )) + ggridges::geom_density_ridges(alpha = 0.7, show.legend = T) +scale_fill_manual(values = cols)+#scale_y_continuous( expand = c(0,0) )+labs(title = "Density of MPG by Cylinder Count-C",x = "Miles Per Gallon (MPG)",y = "Density",fill = "Cylinders") +theme_classic(base_size = 14); pB
#
pB2=ggplot(dat, aes(x = value, y = type, fill = factor(type, levels = c("4", "6", "8")) )) + ggridges::geom_density_ridges(alpha = 0.7, show.legend = T, stat="binline", bins=25) +scale_fill_manual(values = cols)+#scale_y_continuous( expand = c(0,0) )+labs(title = "Density of MPG by Cylinder Count-D",x = "Miles Per Gallon (MPG)",y = "Density",fill = "Cylinders") +theme_classic(base_size = 14); pB2
#
3. 去掉底部的空隙
pB3=ggplot(dat, aes(x = value, y = type, fill = factor(type, levels = c("4", "6", "8")) )) + ggridges::geom_density_ridges(alpha = 0.7, show.legend = T, scale = 2) +scale_fill_manual(values = cols)+#scale_y_continuous( expand = c(0,0) )+labs(title = "Density of MPG by Cylinder Count-E\nset scale=2",x = "Miles Per Gallon (MPG)",y = "Density",fill = "Cylinders") +# 去掉底部scale_y_discrete(expand = c(0, 0)) + # will generally have to set the `expand` optionscale_x_continuous(expand = c(0, 0)) + # for both axes to remove unneeded paddingcoord_cartesian(clip = "on") + # to avoid clipping of the very top of the top ridgelinetheme_classic(base_size = 14); pB3

Ref
- https://zhuanlan.zhihu.com/p/560080959
- https://wilkelab.org/ggridges/
- https://cran.r-project.org/web/packages/ggridges/vignettes/introduction.html
相关文章:
R语言 | 峰峦图 / 山脊图
目的:为展示不同数据分布的差异。 1. ggplot2 实现 # 准备数据 datmtcars[, c("mpg", "cyl")] colnames(dat)c("value", "type") head(dat) # value type #Mazda RX4 21.0 6 #Mazda RX4 Wag …...
16-03、JVM系列之:内存与垃圾回收篇(三)
JVM系列之:内存与垃圾回收篇(三) ##本篇内容概述: 1、执行引擎 2、StringTable 3、垃圾回收一、执行引擎 ##一、执行引擎概述 如果想让一个java程序运行起来,执行引擎的任务就是将字节码指令解释/编译为对应平台上的本地机器指令才可以。 简…...
解决Windows与Ubuntu云服务器无法通过Socket(udp)通信问题
今天在写Socket通信代码的时候,使用云服务器自己与自己通信没有问题,但是当我们把客户端换为Windows系统的时候却无法发送信息到Linux当中,耗时一上午终于搞定了😒。 问题: 如上图,当我在windows的客户端…...
Mysql 中的锁机制
在 MySQL 中,锁是一种机制,用于管理并发访问以确保数据的一致性和完整性。MySQL 支持多种类型的锁,主要分为以下几类: 全局锁:锁定整个数据库,适用于备份等操作,期间禁止所有其他操作。表级锁&…...
12月第1周AI资讯
阅读时间:3-4min 更新时间:2024.12.2-2024.12.6 目录 OpenAI CEO Sam Altman 预告“12天OpenAI”系列活动 腾讯HunyuanVideo:130亿参数的开源视频生成模型 李飞飞的World Labs发布空间智能技术预览版 中科院联手腾讯打造“AI带货王”AnchorCrafter OpenAI CEO Sam Alt…...
【音频识别】数据集合集!
本文将为您介绍经典、热门的数据集,希望对您在选择适合的数据集时有所帮助。 1 Chenyme-AAVT 更新时间:2024-08-23 访问地址: GitHub 描述: 这是一个全自动(音频)视频翻译项目。利用Whisper识别声音,AI…...
Nginx核心配置详解
一、配置文件说明 nginx官方帮助文档:nginx documentation nginx的配置文件的组成部分: 主配置文件:nginx.conf子配置文件: include conf.d/*.conffastcgi, uwsgi,scgi 等协议相关的配置文件mime.types:…...
智能工厂的设计软件 用“力force”的性质构造智能体原型
本文要点 在“智能工厂的设计软件”中 我将对力的研究分为三个领域:经典力学,相对论力学和量子力学,每个研究领域都涉及到force自身性质所具有两个侧面: 明示高度内聚的不可观测的内部表征-“互相性”(哲学性质/哲学…...
Apache AGE:基于PostgreSQL的图数据库
Apache AGE(A Graph Extension)是一个基于 PostgreSQL 的图数据库。它以扩展插件的形式提供,可以在利用 PostgreSQL 先进的 SQL 查询功能和事务支持的同时,享受图数据库的灵活性和可扩展性。 Apache AGE 最初由 Bitnine Global In…...
RabbitMQ延迟消息的实现
RabbitMQ延迟队列的实现 延迟消息是什么延迟消息的实现死信交换机代码实现 延迟消息插件 延迟消息是什么 延迟消息是将消息发送到MQ中,消费者不会立即收到消息,而是过一段时间之后才会收到消息,进行处理。在一些业务中,可以用到延…...
SAP在中国:助力企业跨越成长的新篇章
在当今这个数字化转型风起云涌的时代,每一个企业都在寻求更高效、更智能的管理方式,以期在激烈的市场竞争中脱颖而出。在这场变革中,SAP作为全球领先的企业管理软件解决方案提供商,正以其卓越的产品与服务,在中国这片充…...
数据结构代码归纳
线性表 线性表的顺序表示 定义与初始化 typedef struct SqList{ElemType data[MaxSize];//ElemType *data 开动态数组 int length; }Sqlist; void InitList(SqList &L){L.length0;//若静态数组//若动态数组 //L.data(ElemType*)malloc(sizeof(ElemType)*MaxSize); } …...
数仓技术hive与oracle对比(一)
准备 包括软硬件环境、数据、测试数据三方面的准备内容。 环境 虚拟机软件virtualbox7,同样的虚拟机配置:内存2G、cpu一核,物理主机同一台macbookpro(13-2020款),所以硬盘IO读写速度一致。 综上&#x…...
筑起厂区安全--叉车安全防护装置全解析
在繁忙的工业生产领域中,叉车作为搬运工,穿梭于仓储与生产线之间。然而,叉车的高效运作背后,也隐藏着诸多安全风险,尤其是在那些空间狭小、物流繁忙的环境中。为了降低这些潜在的危险,叉车安全防护装置便成…...
深入浅出云计算 ---笔记
这是博主工作闲时的一些日常学习记录,有些之前很熟悉的,但工作中不常用,慢慢就遗忘了,在这里记录,也是为了激励自己坚持复习,如果有能帮到你,那我将感到非常的荣幸~ 快速到达↓↓↓ IaaS篇>&…...
ARINC 标准全解析:航空电子领域多系列标准的核心内容、应用与重要意义
ARINC标准概述 ARINC标准是航空电子领域一系列重要的标准规范,由航空电子工程委员会(AEEC)编制,众多航空公司等参与支持。这些标准涵盖了从飞机设备安装、数据传输到航空电子设备功能等众多方面,确保航空电子系统的兼…...
SNMP 协议介绍
SNMP 协议详细介绍 SNMP(Simple Network Management Protocol,简单网络管理协议)是一个用于管理和监控计算机网络设备(如路由器、交换机、服务器等)的协议。它允许网络管理员通过网络查看和控制这些设备的状态、配置和性能。 SNMP 协议定义了网络设备如何与管理系统进行通…...
Python中的数据结构深入解析:从列表到字典的优化技巧
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! Python是一门以易用性和可读性著称的高级编程语言,其内置的数据结构为开发者提供了强大的工具,但了解其底层实现及性能优化策略却常被忽略。本文深入探讨Python中的核心数据结构,包括列表(list)、元组…...
如何利用Java爬虫获得商品类目
在当今数字化时代,数据已成为企业最宝贵的资产之一。获取和分析数据的能力对于任何希望在市场上保持竞争力的企业来说都是至关重要的。对于电子商务平台和市场研究公司而言,获取商品类目数据尤为重要,因为这些数据可以帮助他们更好地理解市场…...
力扣面试题 32 - 检查平衡性 C语言解法
题目: 实现一个函数,检查二叉树是否平衡。在这个问题中,平衡树的定义如下:任意一个节点,其两棵子树的高度差不超过 1。 示例 1: 给定二叉树 [3,9,20,null,null,15,7]3/ \9 20/ \15 7 返回 true 。 …...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
Mysql故障排插与环境优化
前置知识点 最上层是一些客户端和连接服务,包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念,为通过安全认证接入的客户端提供线程。同样在该层上可…...
