Python中的数据结构深入解析:从列表到字典的优化技巧
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!
Python是一门以易用性和可读性著称的高级编程语言,其内置的数据结构为开发者提供了强大的工具,但了解其底层实现及性能优化策略却常被忽略。本文深入探讨Python中的核心数据结构,包括列表(list)、元组(tuple)、集合(set)和字典(dict),分析它们的底层实现细节以及使用场景。同时,文章提供大量代码示例和性能测试,揭示如何在实际开发中选择和优化数据结构,以提升代码效率。通过本文,读者将全面掌握Python数据结构的高级用法及性能优化技巧。
目录
- 列表(List)的底层实现与优化
- 元组(Tuple):为何不可变却高效
- 集合(Set):哈希实现与应用场景
- 字典(Dictionary):哈希表的魔法
- 数据结构性能优化技巧
- 总结与最佳实践
列表(List)的底层实现与优化
1.1 列表的底层实现
在Python中,列表是最常用的数据结构之一,它是一个动态数组。列表的底层使用C语言的数组实现,但为了支持动态扩展,采用了“倍增策略”。
内存分配机制
当我们向列表中添加新元素时,Python会预分配更多的内存,以避免频繁的内存分配操作。扩展的倍增机制如下:
- 初始分配一个固定大小的空间。
- 当空间不足时,分配的新空间通常是当前大小的1.5倍到2倍。
示例代码验证这一点:
import sys# 创建一个空列表
lst = []# 不断添加元素并查看列表的大小和内存占用
for i in range(20):lst.append(i)print(f"列表长度: {len(lst)}, 内存大小: {sys.getsizeof(lst)} bytes")
输出样例
列表长度: 1, 内存大小: 88 bytes
列表长度: 2, 内存大小: 88 bytes
列表长度: 4, 内存大小: 88 bytes
列表长度: 5, 内存大小: 120 bytes
列表长度: 9, 内存大小: 152 bytes
...
可以看出,内存分配大小并不与列表长度线性增长,而是采用倍增策略。
1.2 列表的性能优化
Python列表的操作复杂度如下:
- 随机访问:O(1)
- 插入/删除(末尾):O(1)
- 插入/删除(中间/前面):O(n)
为提高性能,可采用以下优化技巧:
-
避免频繁的插入操作:
- 如果需要频繁插入,可考虑使用
collections.deque,其双端队列结构支持O(1)的插入和删除操作。
- 如果需要频繁插入,可考虑使用
-
按需使用生成器:
- 对于一次性迭代的场景,使用生成器可以避免创建临时列表,节省内存。
代码示例:
from collections import deque# 使用deque替代列表
dq = deque()
for i in range(10):dq.append(i) # O(1)复杂度# 左侧插入
dq.appendleft(-1) # O(1)复杂度
print(dq)
元组(Tuple):为何不可变却高效
2.1 元组的底层实现
元组的不可变性源于其内存分配方式。在底层,元组是固定大小的数组,不支持动态扩展,因此在初始化时需要分配所有元素的空间。
元组的优点
- 更高的访问速度:由于不可变性,元组比列表更适合作为键(key)使用,且哈希值的计算更快。
- 内存占用更
相关文章:
Python中的数据结构深入解析:从列表到字典的优化技巧
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! Python是一门以易用性和可读性著称的高级编程语言,其内置的数据结构为开发者提供了强大的工具,但了解其底层实现及性能优化策略却常被忽略。本文深入探讨Python中的核心数据结构,包括列表(list)、元组…...
如何利用Java爬虫获得商品类目
在当今数字化时代,数据已成为企业最宝贵的资产之一。获取和分析数据的能力对于任何希望在市场上保持竞争力的企业来说都是至关重要的。对于电子商务平台和市场研究公司而言,获取商品类目数据尤为重要,因为这些数据可以帮助他们更好地理解市场…...
力扣面试题 32 - 检查平衡性 C语言解法
题目: 实现一个函数,检查二叉树是否平衡。在这个问题中,平衡树的定义如下:任意一个节点,其两棵子树的高度差不超过 1。 示例 1: 给定二叉树 [3,9,20,null,null,15,7]3/ \9 20/ \15 7 返回 true 。 …...
【机器学习】机器学习的基本分类-监督学习-决策树-ID3 算法
ID3(Iterative Dichotomiser 3)是决策树的一种构造算法,由 Ross Quinlan 在 1986 年提出。它主要用于分类问题,通过信息增益选择特征来构建决策树。ID3 假设数据是离散型特征,且不支持连续型数据。 1. 核心思想 划分标…...
Implicit style-content separation using lora
1.Introduction 图像风格化,这个任务涉及根据某些风格参考改编图像的风格,这些参考可以是基于文本或基于图像的,同时保持其内容不变,内容指的是图像的语义信息和结构,而风格通常指的是视觉特征和模式,例如颜色和纹理。这是一个有挑战的任务,因为风格和内容之间的强关联…...
ROS[aruco_ros+easy_handeye]手眼标定(眼在手外+UR10e+realsense-d435i)
参考链接: https://zhuanlan.zhihu.com/p/576861119 https://blog.csdn.net/qq_32618327/article/details/120730198 本次在Docker中使用 打印Aruco码:https://chev.me/arucogen/ 选择Dictionary为 Original ArUco(aruco_ros默认这个,如果…...
第九篇:k8s 通过helm发布应用
什么是helm? Helm 是 Kubernetes 的包管理器。Helm 是查找、分享和使用软件构建 Kubernetes 的最优方式。 在红帽系的Linux中我们使用yum来管理RPM包,类似的,在K8s中我们可以使用helm来管理资源对象(Deployment、Service、Ingress…...
dataTable
在 C# 中,DataTable 是 .NET Framework 中用于处理数据表格的一个类,属于 System.Data 命名空间。它是一种内存中表示数据表的结构,通常用于临时存储和操作数据,类似于数据库中的表。DataTable 的主要特点是行列结构,其…...
json+Tomact项目报错怎么办?
在响应请求的时候,如果http响应没有指定响应数据的content-type,浏览器就不知道按照什么格式解析响应体的数据,因为浏览器只知道怎样解析http的行和头,再从头里获取响应体的字节长度和类型,按照你给的长度去截流&#…...
Flume——sink连接Hive的参数配置(属性参数)
目录 配置文件官网属性参数例子 配置文件官网 可以参考官网的说明 属性参数 属性名默认值说明type无(必须指定)组件类型名称,必须是"hive"hive.metastore无(必须指定)元数据仓库地址,例如&…...
Netty面试内容整理-Netty 的应用场景
Netty 是一个高性能、异步的事件驱动网络框架,广泛应用于各种需要高并发、高吞吐量的网络通信场景。以下是 Netty 的常见应用场景: RPC 框架 ● 应用描述: ○ 远程过程调用(RPC)框架用于跨网络调用远程服务,就像调用本地方法一样。 ○...
波特图方法
在电路设计中,波特图为最常用的稳定性余量判断方法,波特图的根源是如何来的,却鲜有人知。 本章节串联了奈奎斯特和波特图的渊源,给出了其对应关系和波特图相应的稳定性余量。 理论贯通,不在于精确绘…...
服务器数据恢复—硬盘掉线导致热备盘同步失败的RAID5阵列数据恢复案例
服务器存储数据恢复环境: 华为S5300存储中有12块FC硬盘,其中11块硬盘作为数据盘组建了一组RAID5阵列,剩下的1块硬盘作为热备盘使用。基于RAID的LUN分配给linux操作系统使用,存放的数据主要是Oracle数据库。 服务器存储故障&#…...
在Ubuntu中运行和管理AppImage
文章目录 什么是AppImage?如何在Ubuntu中运行AppImage?如何管理AppImage?安装AppImageLauncher如何添加AppImage到系统?如何从系统中移除AppImage? 总结 什么是AppImage? AppImage是一种将应用程序打包为单…...
如何查看电脑的屏幕刷新率?
1、按一下键盘的 win i 键,打开如下界面,选择【系统】: 2、选择【屏幕】-【高级显示设置】 如下位置,显示屏幕的刷新率:60Hz 如果可以更改,则选择更高的刷新率,有助于电脑使用起来界面更加流…...
浏览器数据存储方法深度剖析:LocalStorage、IndexedDB、Cookies、OPFS 与 WASM - SQLite
在当今的 Web 开发领域,选择合适的浏览器数据存储方法对于构建高效、功能丰富的应用程序至关重要。随着 Web 应用的不断演进,从早期的静态 HTML 页面到如今复杂的单页应用和本地优先应用,数据存储需求也日益多样化。本文将深入探讨 LocalStor…...
面向金融场景的大模型 RAG 检索增强解决方案
概述 在现代信息检索领域,检索增强生成(Retrieval-Augmented Generation, RAG)模型结合了信息检索与生成式人工智能的优点,从而在特定场景下提供更为精准和相关的答案。在特定场景下,例如金融等领域,用户通…...
经典蓝牙(BT/EDR)蓝牙配对与连接
经典蓝牙的连接过程包括跳频,扫描,配置交换等过程。对ACL链路以及sco的连接过程也做详细的分析。 1. 为什么不配对便无法建立连接? 任何无线通信技术都存在被监听和破解的可能,蓝牙SIG为了保证蓝牙通信的安全性,采用…...
Flask: flask框架是如何实现非阻塞并发的
写在前面:Flask框架是通过多线程/多进程+阻塞的socket实现非阻塞,其本质是基于python的源库socketserver实现的 前言 认识WSGI协议 认识Werkzeug flask是如何实现非阻塞的 本文使用的flask框架为最新的1.1.1版本,所有代码基于python3运行 一:前言 使用过flask或者其他web框…...
JAVA |日常开发中连接Oracle数据库详解
JAVA |日常开发中连接Oracle数据库详解 前言一、Oracle 数据库概述1.1 定义与特点1.2 适用场景 二、Java 连接 Oracle 数据库的准备工作2.1 添加 Oracle JDBC 驱动依赖2.2 了解连接信息 三、建立数据库连接3.1 代码示例(使用服务名)3.2 步骤解…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
ArcPy扩展模块的使用(3)
管理工程项目 arcpy.mp模块允许用户管理布局、地图、报表、文件夹连接、视图等工程项目。例如,可以更新、修复或替换图层数据源,修改图层的符号系统,甚至自动在线执行共享要托管在组织中的工程项。 以下代码展示了如何更新图层的数据源&…...
ArcGIS Pro+ArcGIS给你的地图加上北回归线!
今天来看ArcGIS Pro和ArcGIS中如何给制作的中国地图或者其他大范围地图加上北回归线。 我们将在ArcGIS Pro和ArcGIS中一同介绍。 1 ArcGIS Pro中设置北回归线 1、在ArcGIS Pro中初步设置好经纬格网等,设置经线、纬线都以10间隔显示。 2、需要插入背会归线…...
CppCon 2015 学习:Simple, Extensible Pattern Matching in C++14
什么是 Pattern Matching(模式匹配) ❝ 模式匹配就是一种“描述式”的写法,不需要你手动判断、提取数据,而是直接描述你希望的数据结构是什么样子,系统自动判断并提取。❞ 你给的定义拆解: ✴ Instead of …...
