leetcode399:除法求值
给你一个变量对数组 equations
和一个实数值数组 values
作为已知条件,其中 equations[i] = [Ai, Bi]
和 values[i]
共同表示等式 Ai / Bi = values[i]
。每个 Ai
或 Bi
是一个表示单个变量的字符串。
另有一些以数组 queries
表示的问题,其中 queries[j] = [Cj, Dj]
表示第 j
个问题,请你根据已知条件找出 Cj / Dj = ?
的结果作为答案。
返回 所有问题的答案 。如果存在某个无法确定的答案,则用 -1.0
替代这个答案。如果问题中出现了给定的已知条件中没有出现的字符串,也需要用 -1.0
替代这个答案。
注意:输入总是有效的。你可以假设除法运算中不会出现除数为 0 的情况,且不存在任何矛盾的结果。
注意:未在等式列表中出现的变量是未定义的,因此无法确定它们的答案。
示例 1:
输入:equations = [["a","b"],["b","c"]], values = [2.0,3.0], queries = [["a","c"],["b","a"],["a","e"],["a","a"],["x","x"]] 输出:[6.00000,0.50000,-1.00000,1.00000,-1.00000] 解释: 条件:a / b = 2.0, b / c = 3.0 问题:a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ? 结果:[6.0, 0.5, -1.0, 1.0, -1.0 ] 注意:x 是未定义的 => -1.0
示例 2:
输入:equations = [["a","b"],["b","c"],["bc","cd"]], values = [1.5,2.5,5.0], queries = [["a","c"],["c","b"],["bc","cd"],["cd","bc"]] 输出:[3.75000,0.40000,5.00000,0.20000]
示例 3:
输入:equations = [["a","b"]], values = [0.5], queries = [["a","b"],["b","a"],["a","c"],["x","y"]] 输出:[0.50000,2.00000,-1.00000,-1.00000]
提示:
1 <= equations.length <= 20
equations[i].length == 2
1 <= Ai.length, Bi.length <= 5
values.length == equations.length
0.0 < values[i] <= 20.0
1 <= queries.length <= 20
queries[i].length == 2
1 <= Cj.length, Dj.length <= 5
Ai, Bi, Cj, Dj
由小写英文字母与数字组成
步骤1:定义题目问题性质
-
问题性质:
- 输入:
equations
: 包含已知等式的字符串对列表,如[["a", "b"], ["b", "c"]]
。values
: 对应每个等式的值列表,如[2.0, 3.0]
。queries
: 包含待求解问题的字符串对列表,如[["a", "c"], ["b", "a"]]
。
- 输出:
- 对于每个问题,返回相应的结果。无法确定的结果返回
-1.0
。
- 对于每个问题,返回相应的结果。无法确定的结果返回
- 输入:
-
限制条件:
1 <= equations.length, queries.length <= 20
- 每个变量由小写字母和数字组成,长度在
[1, 5]
范围内。 - 保证无除数为
0
的情况,无矛盾结果。
-
潜在边界条件:
- 查询中涉及未定义变量时,应返回
-1.0
。 - 对变量自身的查询(如
["a", "a"]
),结果恒为1.0
。 - 可能出现循环关系,如
a/b = 2.0
和b/a = 0.5
。
- 查询中涉及未定义变量时,应返回
步骤2:算法设计和步骤
此问题本质上是一个 图论问题:
- 每个变量是图的一个节点。
- 每个等式表示节点之间的边,边权重是等式的值。
解决方法:使用 Floyd-Warshall 算法或 DFS/BFS 构建和查询图。
-
图的构建:
- 使用邻接表表示图,存储节点和边权。
- 将等式
a / b = k
转化为两条边:a -> b
,权重为k
。b -> a
,权重为1/k
。
-
查询处理:
- 如果两个节点之间有路径,通过图的边权相乘计算结果。
- 如果两个节点之间无路径,返回
-1.0
。
-
算法步骤:
- 步骤1:构建图。
- 步骤2:使用深度优先搜索(DFS)处理每个查询:
- 维护访问记录以防止无限循环。
- 在路径上累积结果,如果找到目标节点,返回结果。
- 步骤3:将结果存入列表并返回。
-
时间复杂度分析:
- 图构建:
O(E)
,其中E
是等式数量。 - 每次查询:
O(V + E)
,使用 DFS 遍历图。 - 总体复杂度:
O(E + Q * (V + E))
,Q
是查询数量。
- 图构建:
步骤3:详细C++代码
class Solution {
public:vector<double> calcEquation(vector<vector<string>>& equations, vector<double>& values, vector<vector<string>>& queries) {// 用邻接表表示图unordered_map<string, unordered_map<string, double>> graph;// 构建图for (int i = 0; i < equations.size(); i++) {string a = equations[i][0];string b = equations[i][1];double value = values[i];graph[a][b] = value;graph[b][a] = 1.0 / value;}// 结果数组vector<double> results;// 对每个查询进行DFSfor (auto& query : queries) {string start = query[0];string end = query[1];// 如果变量不存在,直接返回 -1.0if (graph.find(start) == graph.end() || graph.find(end) == graph.end()) {results.push_back(-1.0);continue;}// 访问记录unordered_set<string> visited;double result = -1.0;if (dfs(graph, start, end, visited, 1.0, result)) {results.push_back(result);} else {results.push_back(-1.0);}}return results;}private:// 深度优先搜索函数bool dfs(unordered_map<string, unordered_map<string, double>>& graph, string current, string target, unordered_set<string>& visited, double current_value, double& result) {// 如果找到目标节点,返回当前累计结果if (current == target) {result = current_value;return true;}// 标记当前节点为已访问visited.insert(current);// 遍历邻接节点for (auto& neighbor : graph[current]) {if (visited.find(neighbor.first) == visited.end()) {if (dfs(graph, neighbor.first, target, visited, current_value * neighbor.second, result)) {return true;}}}// 回溯visited.erase(current);return false;}
};
步骤4:启发
-
图论的广泛应用:
- 将关系映射为图,解决复杂的关系查询问题。
-
DFS 和 BFS 的灵活性:
- DFS 适用于路径累积的问题,而 BFS 更适合求最短路径。
-
邻接表的高效性:
- 在稀疏图中,邻接表比矩阵更高效。
步骤5:实际应用
-
实际场景:货币汇率转换
- 问题:给定一些货币汇率,查询两种货币间的转换率。
- 实现方法:
- 使用货币为节点,汇率为边权,构建图。
- 对每次转换查询,使用类似算法计算结果。
-
其他行业应用:
- 网络传输中的最优路径计算。
- 化学反应方程中分子质量关系的推导。
相关文章:
leetcode399:除法求值
给你一个变量对数组 equations 和一个实数值数组 values 作为已知条件,其中 equations[i] [Ai, Bi] 和 values[i] 共同表示等式 Ai / Bi values[i] 。每个 Ai 或 Bi 是一个表示单个变量的字符串。 另有一些以数组 queries 表示的问题,其中 queries[j]…...

【10】MySQL中的加密功能:如何使用MD5加密算法进行数据加密
文章目录 1. MySQL加密功能概述2. MD5加密算法3. 在MySQL中使用MD5加密4. 使用更安全的加密方法总结 在现代的数据库应用中,数据的安全性和隐私性变得尤为重要。无论是存储用户的个人信息,还是保护敏感的业务数据,确保这些数据不会被未授权访…...
CSS的2D和3D动画效果
CSS的2D和3D动画效果:网页动态设计的魔法 在现代网页设计中,动画已经成为提升用户体验的重要元素。通过引入动态效果,我们不仅可以使交互更加流畅和直观,还能吸引用户的注意力,增强品牌认知度。CSS提供了强大的工具&a…...
30天学会Go--第9天 GO语言 Mysql 学习与实践
30天学会Go–第9天 GO语言 MySQL学习与实践 文章目录 30天学会Go--第9天 GO语言 MySQL学习与实践前言一、MySQL 基础知识1.1 MySQL 的核心特征1.2 MySQL 的常见使用情景 二、安装 MySQL2.1 Windows 安装2.2 macOS 安装2.3 Linux 安装 三、MySQL 常用命令3.1 数据库操作3.2 表操…...
跟李笑来学美式俚语(Most Common American Idioms): Part 54
Most Common American Idioms: Part 54 前言 本文是学习李笑来的Most Common American Idioms这本书的学习笔记,自用。 Github仓库链接:https://github.com/xiaolai/most-common-american-idioms 使用方法: 直接下载下来(或者clone到本地…...

Angular由一个bug说起之十一:排序之后无法展开 Row
问题现象 在使用 Material Table 时,排序功能触发了一个奇怪的 Bug:表格的 Row 无法展开。最终排查发现,问题的根源在于 trackBy 的错误使用。trackBy 方法接受两个参数:index(数据索引)和 row(…...
使用 Flutter 进行移动应用开发:深入探索
文章目录 前言一、介绍二、安装 Flutter 环境三、Flutter 应用结构与基础组件四、状态管理策略五、高级主题结语 前言 随着移动技术的迅猛发展,跨平台开发的需求日益增长。开发者们一直在寻找一种既能保证应用性能又能减少开发成本和时间的技术方案。Flutter 应运而…...
2024年天津市职业院校技能大赛高职组 “信息安全管理与评估”样题第三阶段
(四)第三阶段竞小组(赛项)目(300分) 第三阶段竞赛内容是:网络安全渗透(夺旗挑战赛CTF) 本模块要求参赛者作为攻击方,运用所学的信息收集、漏洞发现、漏洞利用等渗透测试技…...
docker批量创建cloudstack虚拟主机脚本
批量创建cloudstack脚本 #!/bin/bash # 配置变量 container_prefix"cloudworker-" base_ip"192.168.1." start_ip2 #开始ip start_container2 #上同 end_container4 #结束ip 包括 network_name"my_macvlan_network" image_name"dockedahi:…...

npm发布插件到私有仓库保姆级教程
在开发项目的过程中,我们经常需要安装插件依赖,那么怎么把自己开发的组件封装成一个插件,并发布到npm 插件市场或者上传到私有仓库里面呢?今天总结下自己发布插件到私有仓库的记录: 一、创建组件 执行命令创建一个空…...

WinRAR V7.10纯净体验
前言 很多同学在安装了WinRAR之后,每次用这个软件解压文件时,都会先跳出一个广。这个广就像打开了一个新窗口,很打扰人。从WinRAR的5.40版本开始,哪怕是简体中文版的,都会这样弹广告。不管你有没有注册账号࿰…...

scss文件内引入其他scss文件报错
1、今天在编译一些老项目的时候,老是提示下面信息 2、而且有很多Sass import rules are deprecated and will be removed in Dart Sass 3.0.0.警告 3、用npm view sass versions看,其中sass的最新版本是1.82.0 4、经过测试"sass": "1.75…...

1-12 GD32基于定时器输入捕获
前言: 基于本人对相关知识回顾与思考,仅供学习参考 目录 前言: 1.0 输入捕获 2.0 信号周期 3.0 定时器配置 4.0 定时器配置 5.0 定时器中断 后记: 1.0 输入捕获 2.0 信号周期 获取信号周期的方法,在第一次捕获与…...
前端基础的讲解-JS(22)
什么是JSON? 1.json 是一种轻量级的数据交换格式 简单来说:json 就是一种在各个编程语言中流通的数据格式,负责不同编程语言中的数据传递和交互。 类似于: 国际通用语言 - 英语 中国 56 个民族不同地区的通用语言 - 普通话 …...

Minecraft-Datapack数据包开发3-进度与成就
目录 简介成就与进度根进度叶子进度更多的检测方式 简介 代码已经上传: gitee github 成就与进度 工欲善其事必先利其器,别死记硬背,多使用自动生成网站 进度数据包生成器:https://misode.github.io/advancement/指令生成器&…...

泷羽sec-shell编程(3)
shell(3) 声明! 学习视频来自B站up主 泷羽sec 有兴趣的师傅可以关注一下,如涉及侵权马上删除文章,笔记只是方便各位师傅的学习和探讨,文章所提到的网站以及内容,只做学习交流,其他…...

如何解决压测过程中JMeter堆内存溢出问题
如何解决压测过程中JMeter堆内存溢出问题 背景一、为什么会堆内存溢出?二、解决堆内存溢出措施三、堆内存参数应该怎么调整?四、堆内存大小配置建议 背景 Windows环境下使用JMeter压测运行一段时间后,JMeter日志窗口报错“java.lang.OutOfMe…...

爬虫项目基础知识详解
文章目录 Python爬虫项目基础知识一、爬虫与数据分析1.1 Python中的requests库Requests 库的安装Requests 库的 get() 方法爬取网页的通用代码框架HTTP 协议及 Requests 库方法Requests 库主要方法解析 1.2 python中的json库1.3 xpath学习之python中lxml库html了解html结构html…...
uniapp 微信小程序webview 和 h5数据通信
项目是uniapp编写,因为是先开发了h5和app,小程序是突然要用的,做兼容开发已经来不及,由于微信小程序webview载入h5 因为通信必须要特殊限制(网页向小程序 postMessage 时,会在以下特定时机触发并收到消息&a…...

SSM01-MyBatis框架(一文学会MyBatis)
Mybatis框架 一、Mybatis框架简介 1.1 传统JDBC的缺陷 (1)数据库连接创建、释放频繁会造成系统资源浪费 【MyBatis通过在核心配置文件中配置数据路连接池解决此问题】 (2) SQL语句在代码中硬编码(PreparedStatement向占位符传…...

React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...

Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
Web中间件--tomcat学习
Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...