当前位置: 首页 > news >正文

详解:HTTP/HTTPS协议

HTTP协议

一.HTTP是什么

HTTP,全称超文本传输协议,是一种用于分布式、协作式、超媒体信息系统的应用层协议。HTTP往往是基于传输层TCP协议实现的,采用的一问一答的模式,即发一个请求,返回一个响应。

Q:什么是超文本?

A:文本就是HTML,css等,超文本更厉害,内容不仅有文本有的,还可以有图片视频音频等二级制数据。

Q:什么是应用层协议,什么是传输层协议?

TCP/IP协议是传输层协议,简单来说,这个协议只管传输,像是一个搬运工,不管对数据的加工和处理。而HTTP协议是应用层协议,其不关心内容是怎么传输的,只关心数据加工处理等操作。

二.HTTP协议格式

我们可以使用Fiddler等抓包工具来获取HTTP请求或响应的报文内容。

1.请求

下面是我们访问哔哩哔哩时的请求(太多展示不过来,删除了一部分,但不影响):

首行由三部分组成:方法+url+协议版本

header:请求的属性,冒号分割的键值对;每组属性之间使用\n分隔;遇到空行表示header部分结束,即body和header中间是有一行空行的,上面也特意展示出了这个细节。

Body:空行后面的内容都是Body;Body允许为空字符串;如果Body存在,则在header中会有⼀个 Content-Length属性来标识Body的长度;body可以是空的。

2.响应

我们对服务器发起请求,服务器会给我们响应,紧接着上面的访问哔哩哔哩的例子:

首行由三部分组成:版本号+状态码+状态码解释。

header:请求的属性,冒号分割的键值对;每组属性之间使用\n分隔;遇到空行表示header部分结束,即body和header中间是有一行空行的,上面也特意展示出了这个细节。

Body:空行后面的内容都是Body;Body允许为空字符串;如果Body存在,则在header中会有⼀个 Content-Length属性来标识Body的长度;如果服务器返回一个html页面,那么html页面内容就是在body中;body可以是空的。

三.HTTP请求

下面对上面请求报文内容中出现内容进行介绍。

1.url介绍

首先介绍一下url是什么。

url,全称统一资源定位符,也就是大家所谓的网址。下面是url的常见结构:

协议名:这个协议不一定的http协议,还可以是其他协议;可以省略,省略默认是http。

登录信息:一般省略,现在网站进行身份认证一般不通过url进行。

服务器地址:服务器的ip地址或域名,两者可以通过DNS域名解析系统完成相互转换。

端口号:区分应用程序,可以省略。

带层次的文件路径:用于访问某个主机上某个程序管理的某些资源,可以省略。

查询字符串:对访问资源的补充说明,使用键值对结构,键值对之间使用&分隔.键和值之间使用=分隔;可以省略,省略后相当于/. 。

片段标识符:主要用于页面内跳转,可以省略。

从上面我们可以看到一些特殊字符在url中已经被使用了,如果我们还想使用这些字符的话就要进行转义了。

转义的规则如下:将需要转码的字符转为16进制,然后从右到左,取4位(不足4位直接处理),每2位做一位,前面加上%,编码成%XY格式。

2.方法(method)

方法告诉服务器我们这次请求想要干什么。

方法说明支持的HTTP协议版本
GET获取资源1.0、1.1
POST传输实体主体1.0、1.1
PUT传输文件1.0、1.1
HEAD获取报文首部1.0、1.1
DELETE删除服务器指定资源1.0、1.1
OPTIONS返回服务器所⽀持的请求⽅法1.0
TRACE回显服务器端收到的请求1.0
CONNECT要求用隧道协议连接代理1.0
LINK建立和资源之间的联系1.0
UNLINK断开连接关系1.0

1)GET方法

使用的最多。首行的第一部分为GET;URL的查询字符串(query string)可以为空;body部分为空,如果需要GET给服务器发送一些数据,通过查询字符串传递过去。

2)POST方法

使用的比较少。首行的第一部分为POST;URL的查询字符串一般为空;body一般不为空。典型应用场景:登录和上传。

补充:GET和POST的区别:

两者没有本质区别,经常能够混用。从两个单词的语义可以得到GET的获取数据,而POST是提交数据;GET的body一般为空,需要传递的数据通过query string传递,POST的query string一般为空,需要传递的数据通过body传递;GET请求一般是幂等的,POST请求一般是不幂等的(如果多次请求得到的结果⼀样,就视为请求是幂等的);GET可以被缓存,POST不能被缓存。

3.报头(header)

header中使用了键值对结构,下面是报头种类:

1)Host:表示服务器主机的地址和端口;

2)Content-Length:表示body中的数据长度;

3)Content-Type:表示请求的body中的数据格式;

4)User-Agent:表示浏览器/操作系统的属性;

5)Referer:表示这个页面是从哪个页面跳转过来的;

6)Cookie:

Cookie是浏览器运行网页在本地硬盘存储数据的一种机制,这个数据可能是客户端(网页)自行通过JS写入的,也可能来自于服务器(服务器在HTTP响应的header中通过Set-Cookie字段给浏览器返回数据)(反正是程序员自行定义的),Cookie是按照键值对的方式来存储数据的,Cookie是按照域名维度来组织的。

每个不同的域名下都可以有不同的Cookie,不同网站之间的Cookie并不冲突。

浏览器保存了Cookie后,在后续给服务器发送请求的时候就会把这些Cookie键值对放到请求的header中传给服务器。一个典型的应用场景是登录认证,为什么不用每次来CSDN都要重新输入一遍账号密码,答案就在这。

四.状态码

用来表示访问一个页面的结果。下面是一些常见的状态码:

状态码状态码解释介绍
200OK表示访问成功
404Not Found没有找到资源
403Forbidden访问被拒绝,比如一些需要权限的页面
405Method Not Allowed不支持所有方法
500Internal Server Error服务器出现内部错误
504Gateway Timeout请求超时
302Move temporarily临时重定向
301Moved Permanently永久重定向

总结:

类别原因
1XXinformational(信息性状态码)接收的请求正在处理
2XXSuccess(成功状态码)请求正常处理完毕
3XXRedirection(重定向状态码)需要进行附加操作以完成请求
4XXClient Error(客户端错误状态码)服务器无法处理请求
5XXServer Error(服务器错误状态码)服务器处理请求出错

HTTPS

一.HTTPS是什么

HTTPS是HTTP+SSL/TLS,本质也是应用层协议,只不过是在HTTP上加一个加密层。如果我们单使用HTTP协议进行通讯,黑客运营商等可以通过控制设备来获取我们的传输的数据,这是有很大的安全隐患的。因此我们引入了加密层来保证我们传数据是安全的。

二.HTTPS的工作过程

1.对称加密

对称加密就是通过同一个“密钥”,能把明文转化成密文,也能把密文转成明文。如果我们使用对称加密,那么我们双方都要知道密钥是什么。由于一个服务器要为很多个客户端提供服务,大家每个人都使用一个单独的密钥不太可能,那我们就需要在传输的时候把密钥也传过去。

但这又引出了一个新的问题,传输的时候传密钥,不就是把保险柜密码贴在保险柜上嘛,没用。因此我们要传密钥的话要对密钥进行加密。但问题又来了,给密钥加密了,那么密钥要谁解密呢?如果在传一个密钥,那不就成套娃了嘛,无穷无尽,密钥套密钥,最终总会有一个密钥没有被加密。

所以说我们要引入非对称加密。

2.非对称加密

非对称加密要用到两个密钥,一个公钥,一个私钥。公钥可以对明文加密,私钥可以对密文解密,反过来也是可以的,私钥可以对明文加密,公钥可以对密文解密。但这个方法有一个缺点就是效率太低了。

对此我们使用了对称加密和非对称加密的结合版。使用 非对称加密 去加密 对称加密 的密钥。

你以为这个就安全了吗?这里就要介绍一下中间人攻击力了。先给大家举一个生活中的例子。我们知道车钥匙通过向车发送电波可以控制车门的开关。我们怎么实现没有车钥匙也能打开车。

当车主人按下开门的按钮时,我们可以通过电波仪器收集车钥匙发送的电波,这时车主人可能以为刚刚没按上,一般会再按一次。这时,我们收集这次的开门电波,并将上次的开门电波发给车。这样我们就可以一直持有一个有效开门电波,可以把车主的车给开走了(bushi)。这就属于中间人攻击。

在非对称加密中,黑客可以劫持网络设备,当客户端通过网络设备向服务器获取公钥的时候,黑客可以截取这条信息,并自己生成一对公钥和私钥,将自己生成的公钥发回客户端。同时网络设备给服务器发请求获取公钥,服务器返回后将这个真公钥保存好。

客户端会将数据通过我们给它的假公钥加密,到了网络设备后,黑客可以通过自己生成的假密钥进行解密,这样就知道了客户端发送的数据是什么。我们再通过刚刚获得的真公钥加密数据与服务器通讯。服务器就会误以为黑客是客户端,将数据发给了网络设备,这样信息就泄露了。

那么没有办法了吗?其实不然,我们引入证书

证书是由第三方认证机构给服务器颁发的。在服务器搭建的时候,将服务器的域名、公钥等信息发给第三方认证机构生成数字证书,证书上记录了第三方认证机构和服务器的信息(域名、公钥)和数字签名(本质是校验和)。

数字签名是怎么产生的?认证机构会生成一对公钥(pub2)和私钥(pri2),使用证书中的关键信息生成校验和,再使用私钥(pri2)对这个校验和进行加密。

客户端获得证书后进行下面两次处理:

1)使用同样是算法对证书中的字段进行处理,获得校验和1;

2)通过认证机构提供的公钥(pub2)对数字签名进行解密,得到校验和2;

对比校验和1和校验和2是否相等,如果相等,说明证书没有被修改过;如果不相等,说明证书被人修改了。

Q:我们怎么保证我们用的公钥不是黑客生成的?

A:认证机构的公钥不是通过网络传输的,而是操作系统内置的。

Q:如果黑客修改了证书上的公钥呢?

A:如果修改了,那么校验和1就会变,与校验和2匹配不上。

Q:如果黑客自己伪造一个证书呢?

A:服务器在申请证书的时候会提交域名,域名会不同。

相关文章:

详解:HTTP/HTTPS协议

HTTP协议 一.HTTP是什么 HTTP,全称超文本传输协议,是一种用于分布式、协作式、超媒体信息系统的应用层协议。HTTP往往是基于传输层TCP协议实现的,采用的一问一答的模式,即发一个请求,返回一个响应。 Q:什…...

0.96寸OLED---STM32

一、简介 OLED:有机发光二极管 OLED显示屏:性能优异的新型显示屏,具有功耗低(相比LCD不需要背光源,每一个节点当度发光)、响应速度快、宽视角(自发光,从任何视角看都比较清晰&…...

保姆级教学 uniapp绘制二维码海报并保存至相册,真机正常展示图片二维码

一、获取二维码 uni.request({url: https://api.weixin.qq.com/wxa/getwxacode?access_token${getStorage("token")},responseType: "arraybuffer",method: "POST",data: {path: "/pages/index/index"},success(res) {// 转换为 Uint…...

常用Vim操作

vimrc配置 ctags -R * 生成tags文件 set number set ts4 set sw4 set autoindent set cindent set tag~/tmp/log/help/tags 自动补全: ctrln:自动补全 输入: a:从当前文字后插入i:从当前文字前插入s: 删除当前字…...

【C#】NET 9中LINQ的新特性-CountBy

前言 在 .NET 中,使用 LINQ 对元素进行分组并计算它们的出现次数时,需要通过两个步步骤。首先,使用 GroupBy方法根据特定键对元素进行分类。然后,再计算每个组元素包含个数。而随着 .NET 9 版本发布,引入了一些新特性。其中 LINQ 引入了一种新的方法 CountBy,本文一起来了…...

Trimble X9三维激光扫描仪高效应对化工厂复杂管道扫描测绘挑战【沪敖3D】

化工安全关系到国计民生,近年来随着化工厂数字化改革不断推进,数字工厂逐步成为工厂安全管理的重要手段。而化工管道作为工厂设施的重要组成部分,由于其数量多、种类繁杂,一直是企业管理的重点和难点。 传统的化工管廊往往缺乏详…...

【数据结构】文件和外部排序

外部排序 外存信息的存取 计算基本存储方式 内部存储(主存):断电后数据会丢失,访问速度快,成本高容量通常较小外部存储(辅存):断电后数据不会丢失,访问速度较慢&#x…...

新手学习:网页前端、后端、服务器Tomcat和数据库的基本介绍

首先一点,不管是那个框架开发的网页前端,最后都需要Build,构建完毕以后都是原始的HTML CSS JS 三样文件! 网页前端 目录结构 在开始开发网站之前,首先需要了解如何组织文件。一个简单的网页项目通常会有以下几个文件夹和文件&…...

机器学习贝叶斯模型原理

一、引言 在机器学习与数据分析的广袤天地中,贝叶斯模型犹如一颗璀璨的明星,闪耀着独特的光芒,为众多领域的分类、预测等任务提供了强大的理论支撑与实用解法。然而,对于许多初涉此领域的小伙伴而言,贝叶斯模型背后的…...

【C++】实现100以内素数的求解

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 💯前言💯代码概览💯代码结构与逻辑分析1. 包含的头文件和命名空间2. 素数判断函数 isPrime功能输入与输出核心逻辑数学背景 3. 主函数 main功能核心逻辑输出示例 &#…...

Python 浏览器自动化新利器:DrissionPage,让网页操作更简单!

Python 浏览器自动化新利器:DrissionPage,让网页操作更简单! 文章目录 Python 浏览器自动化新利器:DrissionPage,让网页操作更简单!🚀 引言🌟 DrissionPage简介🛠️ 三大…...

Rust学习笔记_13——枚举

Rust学习笔记_10——守卫 Rust学习笔记_11——函数 Rust学习笔记_12——闭包 枚举 文章目录 枚举1. 定义1.1 无值变体1.2 有值变体1.3 枚举与泛型的结合 2. 使用2.1 和匹配模式一起使用2.2 枚举作为类型别名 3. 常用枚举类型 在Rust编程语言中,枚举(enum…...

Postgresql 格式转换笔记整理

1、数据类型有哪些 1.1 数值类型 DECIMAL/NUMERIC 使用方法 DECIMAL是PostgreSQL中的一种数值数据类型,用于存储固定精度和小数位数的数值。DECIMAL的精度是由用户指定的,可以存储任何位数的数值,而小数位数则由用户自行定义。DECIMAL类型的…...

AI开发:卷积神经网络CNN原理初识,简易例程 - 机器学习

一 、卷积神经网络是什么 (1)印象 今天说的CNN,并不是我们熟知的美国有线电视新闻网。 那什么是CNN呢? Convolutional Neural Networks, CNN)简单来说,就是用一个筛子来筛面粉的。 筛子就是卷积核&…...

详细介绍vue的递归组件(重要)

递归组件在 Vue 中是一个非常强大的概念,尤其在渲染层级结构(如树形结构、嵌套列表、评论系统等)时,能够极大地简化代码。 什么是递归组件? 递归组件就是一个组件在其模板中引用自身。这种做法通常用于渲染树形结构或…...

【单片机基础知识】基础知识(CortexM系列、STM32系统框架、存储器映射、寄存器映射)

1. CortexM系列介绍 ARM官方资料: 📎Arm Cortex-M4 Processor Datasheet.pdf📎Arm-Cortex-M7-Processor-Datasheet.pdf📎Arm Cortex-M Comparison Table_v3.pdf📎Arm Cortex-M3 Processor Datasheet.pdf 课程资料&a…...

yolov5导出命令

python export.py --weights yolov5s.pt --img-size 640 --batch-size 1 --device cpu --include onnx 关闭动态输入,cpu导出 检测onnx模型能否加载成功指令: python detect.py --weights yolov5s.onnx --dnn 终端调用detect.py检测图片命令&…...

RabbitMQ的常用术语介绍

出版商 “出版商”一词在不同的上下文中有不同的含义。一般来说,在消息传递中 发布者(也称为“生成者”)是应用程序(或应用程序实例) 发布 (生成) 消息。同一应用程序也可以使用消息 因此同时也…...

Docker魔法:用docker run -p轻松开通容器服务大门

前言 “容器”与“虚拟化”作为现代软件开发和运维中的关键概念,已经广泛应用于各个技术领域。然而,在使用 Docker 部署应用时,常常会遇到这样的问题:容器正常运行,却无法让外界访问其内部服务?即使容器内的应用顺利启动,外部无法通过浏览器或 API 进行连接。此时,doc…...

【后端面试总结】Redis过期删除策略

Redis会将每个设置了过期时间的key放入一个独立的字典中,以后会定时遍历这个字典来删除到期的key。除了定时遍历之外,它还会使用惰性策略来删除过期的key。所谓惰性策略就是在客户端访问这个key的时候,Redis对key的过期时间进行检查&#xff…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

synchronized 学习

学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...