什么是MMD Maximum Mean Discrepancy 最大均值差异?
9多次在迁移学习看到了,居然还是Bernhard Schölkopf大佬的论文,仔细看看。
一.什么是MMD?
1. MMD要做什么?
判断两个样本(族)是不是来自于同一分布
2.怎么做?(直观上)
- 我们通过找到一个表现良好(例如,平滑)的函数来检验分布p和q是否不同,该函数在p的点上表现得很大,在q的点上表现得尽可能小(尽可能负)。我们使用两个样本的平均函数值之间的差异作为检验统计量;当这个值很大时,样本可能来自不同的分布。我们称这个检验统计量为最大平均差异(MMD)。[1]
- 检验统计量是再现核希尔伯特空间(RKHS)的单位球中函数期望的最大差异,称为最大平均差异。[1]
所以就是要找一个最合理的指标,能够表示出这两个分布p q之间的差距。
3.怎么做?(统计上)
首先我们如果有两个分布的具体的分布函数和
,只要对比这两个函数,这个问题非常理想地解决了。
或者如[1]中所引用的引理:
所说,我们如果能获得所有有界连续函数,那么也能知道这两者分布是不是一样的。但是实际上这两个条件都实现不了或者难度太大。
那有没有什么指标(或者函数)能方便刻画分布的差别呢?
回想到在统计上有一个矩的概念[1],一阶中心矩是均值,二阶中心矩是方差,统计上还有任意n对应的n阶矩。
此处有一个引理:
如果和
的任意n阶矩都相等,那么这两个分布相等。
那么我们只要找最低的n使得和
的n阶矩不相等,这就可以作为评估
和
差别的一个标准了~(可以证明满足1.2的性质,具体可以参考[1])
或者更简单来说,我们先对比期望方差,期望方差一样了再找更高级的指标,直到找到不一样的。
4.怎么做?(定义详解)
4.1 定义MMD的公式
[1]里给了很清晰的定义,贴在下面:
(补充嘴一句,无偏估计和有效估计我随便看了[5],其实就是看是不是均值出现偏差)
熟悉泛函分析和统计的朋友肯定一眼看出,这是mapping!把原始的数据点映射称为一个新的点并计算了距离。但是不同的f肯定效果不一样~具体选择了什么呢?看下一节。
4.2实现的具体形式(RKHF版本)
实际上,将再现核希尔伯特空间H中的单位球作为我们的MMD函数类F[1],
这个再现核希尔伯特空间在SVM里出现过!(可参考我的博客[3]的2.3)在SVM里,我们用再现核希尔伯特空间来把弯曲的“分割面”进行"拉直":通过把原始点投影到高维空间中、牺牲了变量的低维度换取线性可分的好性质。
而在MMD,我们是通过投影、牺牲低维度获取什么好性质呢?[2]里讲的很好
在支持向量机中我们都知道有一个高斯核函数,它对应的映射函数恰好可以映射到无穷维上,映射到无穷维上再求期望,正好可以得到随机变量的高阶矩,这个方法有一个更高大上的名字,叫做
kernel embedding of distributions
[2],这个简单理解就是将一个分布映射到再生希尔伯特空间(每个核函数都对应一个RKHS)上的一个点,这样两个分布之间的距离就可以用两个点的内积进行表示!
本来一个分布有乌泱泱一堆点,这样“压缩”到高维空间的一个点,就能求内积了是不是很帅!
具体定义的公式先贴在最前面,还是参考[1]:
上述式子可以直接用,但是怎么证明呢?证明RKHS的结论(也就是把最早定义的实例化为核函数
)要用到以下的推导: (也就是怎么表示式(1)中的期望)[1]
这个引理证明,MMD可以表示为平均嵌入之间的距离H
the MMD may be expressed as the distance in H between mean embeddings
(Borgwardt et al., 2006).
(Borgwardt et al., 2006).指的是:K. M. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel, B. Scholkopf, and A. J. Smola. Integrating ¨structured biological data by kernel maximum mean discrepancy. Bioinformatics (ISMB), 22(14):e49–e57, 2006. 我没看 有需求可以参考哈。
以上定理证明最重要的式第二行,这两个期望的差咋就成了一个内积?回答这个问题,就需要很长的故事了……
4.3(补充)RKHS 那些事(谱分解&Riesz表示定理)
这个式子来源于[2],理解可以看[2]引用的[6]。
推导再生性用到的无穷维线性空间是这个:[6]
太漂亮了,基础的希尔伯特空间这一套理论看的真爽,就是现在用不上,后续闲暇可以细看。简单来说就是用到矩阵理论中的谱分解和泛函里的Riesz表示定理,能够推出上面引用的这个式子。
具体的再生性的无穷维线性空间是
5.具体实现:
同SVM一样,我们不关心核函数(记为)本身,而关心它的内积(一个二元函数
),这样我们定义了一个内积(可参考[4]证明符合内积的性质)
常用的依旧是高斯核函数: [4]
6.代码实现:
[2][6]里很清晰!
参考文献:
[1]Gretton, Arthur, et al. "A kernel two-sample test." The Journal of Machine Learning Research 13.1 (2012): 723-773.
[2]统计知识(一)MMD Maximum Mean Discrepancy 最大均值差异https://zhuanlan.zhihu.com/p/163839117https://zhuanlan.zhihu.com/p/163839117
[3]什么是支持向量机(Support vector machine)和其原理_支持向量机(support vector machine, svm)-CSDN博客
[4]Maximum Mean Discrepancy (MMD) in Machine LearningMaximum mean discrepancy (MMD) is a kernel based statistical test used to determine whether given two distribution are the same which is proposed in [1]. MMD...https://www.onurtunali.com/ml/2019/03/08/maximum-mean-discrepancy-in-machine-learning.html#references[5]什么是无偏估计?https://www.zhihu.com/question/22983179
https://www.zhihu.com/question/22983179 [6]Kernel Distribution Embedding https://zhuanlan.zhihu.com/p/114264831
https://zhuanlan.zhihu.com/p/114264831
相关文章:

什么是MMD Maximum Mean Discrepancy 最大均值差异?
9多次在迁移学习看到了,居然还是Bernhard Schlkopf大佬的论文,仔细看看。 一.什么是MMD? 1. MMD要做什么? 判断两个样本(族)是不是来自于同一分布 2.怎么做?(直观上)…...

沐风老师3DMAX摄相机阵列插件使用方法
3DMAX摄相机阵列插件,从网格对象或样条线的顶点法线快速创建摄相机阵列。该插件从网格的顶点或样条线的节点获取每个摄影机的位置和方向。 3DMAX摄相机阵列插件支持目前3dMax主流的物理相机、标准相机、VRay物理相机。 【版本要求】 3dMax 2015及更高版本 【安装方…...
Java Web 开发学习中:过滤器与 Ajax 异步请求
一、过滤器 Filter: 过滤器的概念与用途 在一个庞大的 Web 应用中,有许多资源需要受到保护或进行特定的预处理。过滤器就像是一位智能的守卫,站在资源的入口处,根据预先设定的规则,决定哪些请求可以顺利访问资源&…...

数据结构 (36)各种排序方法的综合比较
一、常见排序方法分类 插入排序类 直接插入排序:通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。希尔排序:是插入排序的一种改进版本,先将整个待排序的记录序列分割成为…...

使用vue搭建不需要打包的前端项目
需求详情:用户不要项目进行打包,开发还是选用vue2,且需要便于上手 项目目录 >api 存放api.js,主要是前端用到的接口 >css >>>fonts 存放页面需要的字体文件 >>>1.css 存放所有css文件 >data 存放echarts…...
发布订阅者=>fiber=>虚拟dom
文章目录 vue的响应式原理-发布订阅者模式vue3 响应式原理及优化fiberfiber 与 虚拟dom vue的响应式原理-发布订阅者模式 Vue响应式原理概述 Vue.js的响应式原理是其核心特性之一。它使得当数据发生变化时,与之绑定的DOM元素能够自动更新。其主要基于数据劫持和发布…...
Python-计算机中的码制以及基础运算符(用于分析内存)
记录python学习,直到学会基本的爬虫,使用python搭建接口自动化测试就算学会了,在进阶webui自动化,app自动化 python基础2-码制 计算机中的码制原码(True Form)反码(Ones Complement)…...

yum 离线软件安装
适用范围 支持YUM软件管理的操作系统: 银河麒麟 服务器操作系统V10统信服务器操作系统V20CentOS 系列 准备 准备一台可以连接互联网并且与离线安装的操作系统相同版本的操作系统,包括指令集类型相同。 安装下载工具 查询是否已经安装下载工具 yum…...

【C语言】17. 数据在内存中的存储
文章目录 一、整数在内存中的存储二、⼤⼩端字节序和字节序判断1、什么是⼤⼩端?2、为什么有⼤⼩端?3、练习1)练习12)练习23)练习34)练习45) 练习56)练习6 三、浮点数在内存中的存储1、浮点数的…...

二叉树概述
目录 一、二叉树的基本结构 二、二叉树的遍历 1.前序 2.中序 3.后序 4.层序遍历 三.计算二叉树的相关参数 1.计算节点总个数 2.计算叶子节点的个数 3.计算树的高度 4.计算第k层的子树个数 5.查找树中val为x的节点 四.刷题 1.单值二叉树 2.检查两棵树是否相同 3.一…...

【开源免费】基于SpringBoot+Vue.JS图书进销存管理系统(JAVA毕业设计)
博主说明:本文项目编号 T 082 ,文末自助获取源码 \color{red}{T082,文末自助获取源码} T082,文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析…...

惠普M126a连接共享打印机故障0x000006ba,系统不支持请求的命令,print spooler重复停止
故障说明:直连惠普M126a打印机正常打印,通过共享连接的报故障。 目前已知有三种故障: 1、0x000006ba报错2、系统不支持请求的命令3、print spooler重复停止(或者,print spooler没有停止依然报故障) 解决方…...
Chainlit集成LlamaIndex实现一个通过用户聊天对话的酒店预定系统
Agent 简介 “Agent”是一个自动推理和决策引擎。它接受用户输入/查询,并为执行该查询做出内部决策,以便返回正确的结果。关键的代理组件可以包括但不限于: 把复杂的问题分解成小问题选择要使用的外部工具+调用工具的参数计划一系列的任务将以前完成的任务存储在内存模块中…...

计算机网络之网络层超详细讲解
个人主页:C忠实粉丝 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C忠实粉丝 原创 计算机网络之网络层超详细讲解 收录于专栏【计算机网络】 本专栏旨在分享学习计算机网络的一点学习笔记,欢迎大家在评论区交流讨论💌 …...

代码随想录算法训练营day51|动态规划part13
回文子串 回文子串这里的递推式不太一样,dp[i] 和 dp[i-1] ,dp[i 1] 看上去都没啥关系。所以要回归到回文的定义 而我们发现,判断一个子字符串(字符串下标范围[i,j])是否回文,依赖于,子字符串…...

ESP8266自制桌宠机器狗
看到别人的桌宠机器狗有没有想要拥有一台的冲动,其实我们可以使用少量的资金自制一台机器狗 1 硬件 esp8266芯片 舵机 超声波传感器 2 接线 ESP8266配件...

【力扣】409.最长回文串
问题描述 思路解析 因为同时包含大小写字母,直接创建个ASCII表大小的桶来标记又因为是要回文子串,所以偶数个数的一定可以那么同时,对于出现奇数次数的,我没需要他们的次数-1,变为偶数,并且可以标记出现过…...
git 拉取代码时报错 gitignore Please move or remove them before you merge.
git 拉取代码时报错, The following untracked working tree files would be overwritten by merge: .gitignore Please move or remove them before you merge. 当你在使用 Git 进行代码拉取(通常是执行 git pull 或 git merge 命令)时遇到这…...

19,[极客大挑战 2019]PHP1
这个好玩 看到备份网站字眼,用dirsearch扫描 在kali里打开 爆破出一个www.zip文件 访问一下 解压后是这个页面 class.php <?php include flag.php; error_reporting(0); class Name{ private $username nonono; private $password yesyes; publi…...

MQTT消息服务器mosquitto介绍及说明
Mosquitto是一个开源的消息代理软件,支持MQTT协议(消息队列遥测传输协议)。MQTT是一种轻量级的发布/订阅消息传输协议,专为低带宽、不可靠网络环境下的物联网设备通信而设计。以下是关于Mosquitto服务器的一些介绍和说明ÿ…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...

高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...

NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的“no matching...“系列算法协商失败问题
【SSH疑难排查】轻松解决新版OpenSSH连接旧服务器的"no matching..."系列算法协商失败问题 摘要: 近期,在使用较新版本的OpenSSH客户端连接老旧SSH服务器时,会遇到 "no matching key exchange method found", "n…...

【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...