当前位置: 首页 > news >正文

高级数据结构-树状数组

介绍

树状数组的推导

两个基础操作

模板-acwing795. 前缀和

#include<bits/stdc++.h>
using namespace std;const int N = 1e6+10;
int c[N]; int lowbit(int x){return x & -x;
}int query(int x){int ans = 0;for(; x; x -= lowbit(x)) ans += c[x];return ans;
}void add(int x,int y){for(; x <= N; x += lowbit(x)) c[x] += y;
}int main(){int n,m; scanf("%d%d",&n,&m);for(int i = 1; i <= n; i++){int num; scanf("%d",&num);add(i,num);}while(m--){int l,r; scanf("%d%d",&l,&r);printf("%d\n",query(r)-query(l-1));}return 0;
} 

模板-acwing5910. 求逆序对

#include<bits/stdc++.h>
using namespace std;typedef long long LL;
const int N = 1e6+10;
LL c[N],a[N];int lowbit(int x)  // 返回末尾的1
{return x & -x;
}LL query(int x){LL ans = 0;for(; x; x -= lowbit(x)) ans += c[x];return ans;
}void add(int x,int y){for(; x <= N; x += lowbit(x)) c[x] += y;
}int main()
{LL ans = 0;int n; scanf("%d",&n);for(int i = 1; i <= n; i++){scanf("%d",&a[i]);}//倒序扫描,找值比当前这个数小但是先进入树状数组的数,即1-(a[i]-1)的和for(int i = n; i >= 1; i--){ans += query(a[i]-1)-query(0);add(a[i],1);}printf("%lld\n",ans);return 0;
}

相关文章:

高级数据结构-树状数组

介绍 树状数组的推导 两个基础操作 模板-acwing795. 前缀和 #include<bits/stdc.h> using namespace std;const int N 1e610; int c[N]; int lowbit(int x){return x & -x; }int query(int x){int ans 0;for(; x; x - lowbit(x)) ans c[x];return ans; }void add…...

LeetCode279. 完全平方数(2024冬季每日一题 27)

给你一个整数 n &#xff0c;返回 和为 n 的完全平方数的最少数量 。 完全平方数 是一个整数&#xff0c;其值等于另一个整数的平方&#xff1b;换句话说&#xff0c;其值等于一个整数自乘的积。例如&#xff0c;1、4、9 和 16 都是完全平方数&#xff0c;而 3 和 11 不是。 …...

Scala 隐式转换

object test {//复习隐式转换&#xff1a;//隐式转换&#xff1a;编译器 偷偷地&#xff0c;自动地帮我们把一种数据转换为另一种类型//例如&#xff1a;int --> double//它有失败的时候&#xff08;double --> int&#xff09;&#xff0c;有成功的时候//当它转换失败的…...

K8S命令部署后端(流水线全自动化部署)

前言 本文为链接: 云效流水线k8s半自动部署java&#xff08;保姆级&#xff09;的补充,本文起初的目的是为了补充完善k8s流水线的全自动化部署,但是也适用于k8s的一键重启,因为使用k8s的web页面容易出现漏点的情况,因此也可以把代码保存为shell脚本,同样可以实现一键重启。关于…...

Ubuntu中配置交叉编译工具的三条命令的详细研究

关于该把下面的三条交叉编译配置语句加到哪里&#xff0c;详情见 https://blog.csdn.net/wenhao_ir/article/details/144326545 的第2点。 现在试解释下面三条交叉编译配置语句&#xff1a; export ARCHarm export CROSS_COMPILEarm-buildroot-linux-gnueabihf- export PATH$…...

【PyQt5教程 二】Qt Designer 信号与槽的使用方法及PyQt5基本小部件说明

目录 一、信号与槽机制&#xff1a; 二、信号与槽使用方法&#xff1a; &#xff08;1&#xff09;使用Qt Designer 的信号与槽编辑器&#xff1a; &#xff08;2&#xff09;使用固定语法直接建立信号槽连接&#xff1a; 三、PyQt小部件及其触发信号&#xff1a; &#x…...

编程语言中接口(Interface)介绍

编程语言中接口&#xff08;Interface&#xff09;介绍 在编程语言中&#xff0c;“接口”&#xff08;Interface&#xff09;是一种抽象类型&#xff0c;定义了一组方法&#xff08;和属性&#xff09;&#xff0c;但不包含其具体实现。接口通常用于规定类必须实现的行为&…...

算法学习之贪心算法

前言 记录一下&#xff0c;免得又又忘了 贪心算法 在刚接触的时候&#xff0c;我一直觉得贪心和动态规划有相似之处&#xff0c;但做过的题目看&#xff0c;贪心似乎不用迭代...

【jvm】垃圾回收的优点和原理

目录 1. 说明2. 优点3. 原理3.1 发现无用对象3.2 回收无用对象所占用的内存 4. 回收算法4.1 标记-清除算法4.2 复制算法4.3 标记-整理算法4.4 分代收集算法 1. 说明 1.JVM&#xff08;Java虚拟机&#xff09;垃圾回收是Java语言的一大特性&#xff0c;它自动管理内存&#xff…...

YOLO系列发展历程:从YOLOv1到YOLO11,目标检测技术的革新与突破

文章目录 前言一、YOLOv1&#xff1a;单阶段目标检测的开端二、YOLOv2&#xff1a;更精准的实时检测三、YOLOv3&#xff1a;阶梯特征融合四、YOLOv4&#xff1a;性能和速度的新平衡五、YOLOv5&#xff1a;易用性和扩展性的加强六、YOLOv6&#xff1a;工业部署的利器七、YOLOv7&…...

深入浅出:序列化与反序列化的全面解析

文章目录 1. 引言2. 什么是序列化&#xff1f;2.1 为什么需要序列化&#xff1f; 3. 什么是反序列化&#xff1f;3.1 反序列化的重要性 4. 序列化与反序列化的实现4.1 JSON (JavaScript Object Notation)4.2 XML (eXtensible Markup Language)4.3 Protocol Buffers (Protobuf)4…...

word实践:正文/标题/表图等的共用模板样式设置

说在前面 最近使用word新建文件很多&#xff0c;发现要给大毛病&#xff0c;每次新建一个word文件&#xff0c;标题/正文的字体、大小和间距都要重新设置一遍&#xff0c;而且每次设置这些样式都忘记了参数&#xff0c;今天记录一下&#xff0c;以便后续方便查看使用。现在就以…...

Blender中使用BlenderGIS插件快速生成城市建筑模型

导入下载 BlenderGIS 插件 去github上下载其压缩包&#xff0c;地址如下&#xff1a; https://github.com/domlysz/BlenderGIS 在BlenderGIS中导入这个插件压缩包&#xff1a; 点击上方菜单栏的编辑&#xff0c;点击偏好设置 在插件>从磁盘安装中导入刚刚下载的压缩包 可…...

【单元测试】单元测试的重要性

1一些错误的认识 在实际的单元测试过程中总会有一些错误的认识左右着我们&#xff0c;使之成为单元测试最大的障碍&#xff0c;在此将其一一分析如下&#xff1a; 它太浪费时间了&#xff0c;现在要赶进度&#xff0c;时间上根本不允许&#xff0c;或者随便做做应付领导。 …...

Codeforces Round 992 (Div. 2)

这场cf只在b卡了一下&#xff0c;因为b真是犯蠢了&#xff0c;我以为会向下取整&#xff0c;结果是完全就不取整&#xff0c;或者说是向上取整&#xff0c;卡了我半个小时&#xff0c;要不是紧急看了题一下&#xff0c;昨天那场就毁了 话不多说&#xff0c;直接开讲 A. Game …...

el-table一键选择全部行,切换分页后无法勾选

el-table一键全选&#xff0c;分页的完美支持 问题背景尝试解决存在问题问题分析 解决方案改进思路如下具体代码实现如下 问题背景 现在有个需求&#xff0c;一个表格有若干条数据(假设数量大于20&#xff0c;每页10条&#xff0c;保证有2个以上分页即可)。 现在需要在表格上方…...

负载均衡最佳实践及自定义负载均衡器

文章目录 负载均衡最佳实践及自定义负载均衡器一、负载均衡概述二、轮询负载均衡器&#xff08;一&#xff09;理论介绍&#xff08;二&#xff09;Java 实现示例&#xff08;三&#xff09;关键步骤&#xff08;四&#xff09;流程图 三、随机负载均衡器&#xff08;一&#x…...

大模型 LMDeploy 量化部署

1 模型部署 定义&#xff1a; 在软件工程中&#xff0c;部署通常指的是将开发完毕的软件投入使用的过程。在人工智能领域&#xff0c;模型部署是实现深度学习算法落地应用的关键步骤。简单来说&#xff0c;模型部署就是将训练好的深度学习模型在特定环境中运行的过程。 场景…...

算法设计5_分支限界法

分支限界法 分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树&#xff0c;裁剪那些不能得到最优解的子树以提高搜索效率。 步骤&#xff1a; ① 定义解空间(对解编码); ② 确定解空间的树结构&#xff1b; ③ 按BFS等方式搜索&#xff1a; a.每个活…...

2025年人工智能专业可以考哪些证书呢?

人工智能是目前全球热门的专业领域之一&#xff0c;随着人工智能应用范围的不断扩大&#xff0c;越来越多的人开始关注人工智能相关证书的获取。那么&#xff0c;人工智能专业可以考什么证书呢&#xff1f;本文将为大家介绍人工智能相关证书的种类。 人工智能机器视觉应用工程师…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...