当前位置: 首页 > news >正文

【C++】等差数列末项计算题解析及优化


在这里插入图片描述

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳]
本文专栏: C++

文章目录

  • 💯前言
  • 💯题目描述与输入输出要求
  • 💯数学分析与公式推导
    • 公差的计算
    • 通项公式推导
  • 💯示例解析
    • 解题步骤
  • 💯程序实现与解析
    • 初版代码
      • 代码解析
      • 优点与不足
    • 改进实现:显式处理特殊情况
      • 改进点分析
      • 优点与不足
  • 💯代码优化与封装
    • 封装代码
      • 优化点说明
  • 💯实用提示与总结
  • 💯小结


在这里插入图片描述


💯前言

  • 等差数列是数学领域中极为重要的一类数列,其核心特征是任意相邻两项的差值保持不变。这一特性使得等差数列代数数论研究中扮演着重要角色,同时广泛应用于数据建模工程预测以及数值分析等实际场景。
    本题的目标是,在给定等差数列的前两项 a 1 , a 2 a_1, a_2 a1,a2 的基础上,计算该数列的第 n n n 项。这一问题旨在测试解题者对等差数列公式的掌握、算法设计能力以及程序实现的准确性。
    C++ 参考手册
    在这里插入图片描述

💯题目描述与输入输出要求

在这里插入图片描述
题目描述
本题要求计算等差数列的第 n n n 项值。等差数列的定义如下:

  • 任意相邻两项之间的差值为一个常量,称为公差 d d d
  • 数列的通项公式表达为:
    a n = a 1 + ( n − 1 ) ⋅ d a_n = a_1 + (n - 1) \cdot d an=a1+(n1)d
    其中:
    • a n a_n an 表示数列的第 n n n 项。
    • a 1 a_1 a1 表示数列的第一项。
    • d d d 表示数列的公差。

输入格式
输入为一行,包含三个整数 a 1 , a 2 , n a_1, a_2, n a1,a2,n,满足以下条件:

  • − 100 ≤ a 1 , a 2 ≤ 100 -100 \leq a_1, a_2 \leq 100 100a1,a2100
  • 0 < n ≤ 1000 0 < n \leq 1000 0<n1000

输出格式
程序输出一个整数,即数列的第 n n n 项的值。

输入输出示例
示例 1
输入:

1 4 100

输出:

298

💯数学分析与公式推导

在这里插入图片描述


公差的计算

在这里插入图片描述
公差 d d d 是等差数列的核心特性,由定义可得:
d = a 2 − a 1 d = a_2 - a_1 d=a2a1
一旦确定了公差,便可以通过递推或通项公式计算出数列中的任意一项。


通项公式推导

在这里插入图片描述
将公差公式代入通项公式,我们得到:
a n = a 1 + ( n − 1 ) ⋅ ( a 2 − a 1 ) a_n = a_1 + (n - 1) \cdot (a_2 - a_1) an=a1+(n1)(a2a1)
或者,从第二项 a 2 a_2 a2 出发,公式可以等价写为:
a n = a 2 + ( n − 2 ) ⋅ ( a 2 − a 1 ) a_n = a_2 + (n - 2) \cdot (a_2 - a_1) an=a2+(n2)(a2a1)
这一形式为代码实现提供了更为灵活的选择。


💯示例解析

在这里插入图片描述

输入示例

1 4 100

解题步骤

在这里插入图片描述

  1. 计算公差 d d d
    d = a 2 − a 1 = 4 − 1 = 3 d = a_2 - a_1 = 4 - 1 = 3 d=a2a1=41=3

  2. 计算第 100 项 a 100 a_{100} a100
    a 100 = a 1 + ( 100 − 1 ) ⋅ d = 1 + 99 ⋅ 3 = 1 + 297 = 298 a_{100} = a_1 + (100 - 1) \cdot d = 1 + 99 \cdot 3 = 1 + 297 = 298 a100=a1+(1001)d=1+993=1+297=298

  3. 验证结果:

    • 通过代入公式验证,计算结果符合逻辑且准确。

输出结果

298

💯程序实现与解析

在这里插入图片描述


初版代码

以下代码直接采用公式实现:

#include <iostream>
using namespace std;int main() {int a1, a2, n;cin >> a1 >> a2 >> n;cout << (a2 - a1) * (n - 2) + a2 << endl;return 0;
}

在这里插入图片描述


代码解析

在这里插入图片描述

  1. 输入部分:

    • 从标准输入读取 a 1 , a 2 , n a_1, a_2, n a1,a2,n
  2. 计算部分:

    • 直接使用公式 ( a 2 − a 1 ) ⋅ ( n − 2 ) + a 2 (a_2 - a_1) \cdot (n - 2) + a_2 (a2a1)(n2)+a2。该公式等价于:
      a n = a 2 + ( n − 2 ) ⋅ ( a 2 − a 1 ) a_n = a_2 + (n - 2) \cdot (a_2 - a_1) an=a2+(n2)(a2a1)
  3. 输出部分:

    • 输出计算结果。

优点与不足

在这里插入图片描述

  • 优点:
    • 简洁直接,适合处理一般情况。
  • 不足:
    • 未显式处理特殊情况(如 n = = 1 n == 1 n==1 n = = 2 n == 2 n==2),可能导致逻辑混乱。
    • 对初学者而言,公式的隐式逻辑不够直观。

改进实现:显式处理特殊情况

以下代码改进了特殊情况的处理:

#include <iostream>
using namespace std;int main() {int a1, a2, n;cin >> a1 >> a2 >> n;if (n == 1)cout << a1 << endl;else if (n == 2)cout << a2 << endl;elsecout << a2 + (n - 2) * (a2 - a1) << endl;return 0;
}

在这里插入图片描述


改进点分析

在这里插入图片描述

  1. 特殊情况处理:

    • n = = 1 n == 1 n==1 时输出 a 1 a_1 a1
    • n = = 2 n == 2 n==2 时输出 a 2 a_2 a2
  2. 一般情况处理:

    • 使用通项公式计算第 n n n 项。

优点与不足

在这里插入图片描述

  • 优点:
    • 逻辑更加清晰,适合扩展和调试。
  • 不足:
    • 存在一定的重复代码。

💯代码优化与封装

在这里插入图片描述
为进一步提升代码的复用性与可维护性,我们可以将核心逻辑封装为函数:


封装代码

#include <iostream>
using namespace std;// 计算等差数列的第 n 项
int calculateTerm(int a1, int a2, int n) {if (n == 1)return a1;else if (n == 2)return a2;elsereturn a2 + (n - 2) * (a2 - a1);
}int main() {int a1, a2, n;cin >> a1 >> a2 >> n;cout << calculateTerm(a1, a2, n) << endl;return 0;
}

在这里插入图片描述


优化点说明

在这里插入图片描述

  1. 逻辑模块化:

    • 核心逻辑被独立为 calculateTerm 函数,使主程序简洁明了。
  2. 增强可读性:

    • 函数命名直观,便于理解其功能。
  3. 便于扩展:

    • 若需增加输入验证或边界处理,可直接在函数中实现。

💯实用提示与总结

在这里插入图片描述
提示 1:边界条件的重要性

  • 在实现时,应显式处理边界情况(如 n = = 1 n == 1 n==1 n = = 2 n == 2 n==2)。
  • 对异常输入(如 n ≤ 0 n \leq 0 n0)进行适当的错误提示。

提示 2:公式的灵活应用

  • 根据不同场景,选择从 a 1 a_1 a1 a 2 a_2 a2 出发的通项公式,可以优化计算。

提示 3:逐步验证结果

  • 对公式的每一步代入进行验证,确保逻辑严谨。

提示 4:代码调试策略

  • 利用断点调试工具,逐步检查变量值与计算结果。

💯小结

  • 在这里插入图片描述
    通过本文的分析与优化,我们明确了以下要点:
  1. 公式掌握是解题核心:
    • 等差数列的通项公式及其变形是解决此类问题的基础。
  2. 特殊情况处理提升代码健壮性:
    • 显式处理边界条件可以避免潜在逻辑错误。
  3. 封装与模块化设计增强代码质量:
    • 将逻辑独立为函数,提升了代码的可读性、复用性与维护性。

在这里插入图片描述


相关文章:

【C++】等差数列末项计算题解析及优化

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;题目描述与输入输出要求&#x1f4af;数学分析与公式推导公差的计算通项公式推导 &#x1f4af;示例解析解题步骤 &#x1f4af;程序实现与解析初版代码代码解析优点与不足…...

vue中父组件接收子组件的多个参数的方法:$emit或事件总线

方法一&#xff1a;使用 $emit 方法 原理 子组件通过 $emit 方法向父组件发送事件&#xff0c;同时可以传递多个参数&#xff0c;父组件通过事件监听来接收这些参数。 示例 子组件代码 <template><div><button click"sendData">发送数据</…...

2024.12.10——攻防世界Web_php_include

知识点&#xff1a;代码审计 文件包含 伪协议 伪协议知识点补充&#xff1a; 在PHP中&#xff0c;伪协议&#xff08;Pseudo Protocols&#xff09;也被称为流包装器&#xff0c;这些伪协议以 php://开头&#xff0c;后面跟着一些参数&#xff0c;用于指定要执行的操作或需要…...

【机器学习算法】——数据可视化

1. 饼图&#xff1a;显示基本比例关系 import matplotlib.pyplot as pltplt.rcParams[font.sans-serif] [SimHei] plt.rcParams[axes.unicode_minus] False# ——————————————————————————————————————————————————————…...

如何在 Android 项目中实现跨库传值

背景介绍 在一个复杂的 Android 项目中&#xff0c;我们通常会有多个库&#xff08;lib&#xff09;&#xff0c;而主应用程序&#xff08;app&#xff09;依赖所有这些库。目前遇到的问题是&#xff0c;在这些库中&#xff0c;libAd 需要获取 libVip 的 VIP 等级状态&#xf…...

JavaCV之FFmpegFrameFilter视频转灰度

1、代码 package com.example.demo.ffpemg;import lombok.SneakyThrows; import org.bytedeco.javacv.*;public class FFmpegFrameFilterVideoExample {SneakyThrowspublic static void main(String[] args) {// 输入视频文件路径String inputVideoPath "f:/2222.mp4&qu…...

Redis:基于PubSub(发布/订阅)、Stream流实现消息队列

Redis - PubSub、Stream流 文章目录 Redis - PubSub、Stream流1.基于List的消息队列2.基于PubSub的消息队列3.基于Stream的消息队列1.Redis Streams简介2.Redis Streams基本命令1.XADD 添加消息到末尾2.XLEN 获取消息长度3.XREAD 读取消息 &#xff08;单消费模式&#xff09;4…...

C#飞行棋(新手简洁版)

我们要在主函数的顶部写一些全局静态字段 确保能在后续的静态方法中能够获取到这些值和修改 static int[] Maps new int[100];static string[] PlayerName new string[2];static int[] PlayerScore new int[2];static bool[] Flags new bool[2] {true,true }; static int[]…...

【OpenCV】图像转换

理论 傅立叶变换用于分析各种滤波器的频率特性。对于图像&#xff0c;使用 2D离散傅里叶变换&#xff08;DFT&#xff09; 查找频域。快速算法称为 快速傅立叶变换&#xff08;FFT&#xff09; 用于计算DFT。 Numpy中的傅立叶变换 首先&#xff0c;我们将看到如何使用Numpy查…...

力扣 重排链表-143

重排链表-143 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(nullptr) {}* ListNode(int x, ListNode *next) : val(x), next(next)…...

【Kubernetes理论篇】容器集群管理系统Kubernetes(K8S)

Kubernetes集群部署基本管理实战 这么好的机会&#xff0c;还在等什么&#xff01; 01、Kubernetes 概述 K8S是什么 K8S 的全称为 Kubernetes (K12345678S)&#xff0c;PS&#xff1a;“嘛&#xff0c;写全称也太累了吧&#xff0c;写”。不如整个缩写 K8s 作为缩写的结果…...

Kubernetes 常用操作大全:全面掌握 K8s 基础与进阶命令

Kubernetes&#xff08;简称 K8s&#xff09;作为一种开源的容器编排工具&#xff0c;已经成为现代分布式系统中的标准。它的强大之处在于能够自动化应用程序的部署、扩展和管理。在使用 Kubernetes 的过程中&#xff0c;熟悉常用操作对于高效地管理集群资源至关重要。本文将详…...

爬虫基础之Web网页基础

网页的组成 网页可以分为三大部分–HTML、CSS 和 JavaScript。如果把网页比作一个人&#xff0c;那么 HTML 相当于骨架、JavaScript 相当于肌肉、CSS 相当于皮肤&#xff0c;这三者结合起来才能形成一个完善的网页。下面我们分别介绍一下这三部分的功能。 HTML HTML(Hypertext…...

k8s, deployment

控制循环&#xff08;control loop&#xff09; for {实际状态 : 获取集群中对象X的实际状态&#xff08;Actual State&#xff09;期望状态 : 获取集群中对象X的期望状态&#xff08;Desired State&#xff09;if 实际状态 期望状态{什么都不做} else {执行编排动作&#xf…...

使用ensp搭建OSPF+BGP和静态路由,底层PC使用dhcp,实现PC互通

1.4种方式&#xff0c;实现PC2可以互通底层的所有设备 OSPF&#xff1a;OSPF是一种用于互联网协议网络的链路状态路由协议 BGP&#xff1a;是一种用于互联网上进行路由和可达性信息传递的外部网关协议&#xff08;EGP&#xff09; 静态路由&#xff1a; 静态路由是一种路由方…...

TÜLU 3: Pushing Frontiers in Open Language Model Post-Training

基本信息 &#x1f4dd; 原文链接: https://arxiv.org/abs/2411.15124&#x1f465; 作者: Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Sau…...

深入解读 MySQL EXPLAIN 与索引优化实践

MySQL 是当今最流行的关系型数据库之一&#xff0c;为了提升查询性能&#xff0c;合理使用 EXPLAIN 工具和优化索引显得尤为重要。本文将结合实际示例&#xff0c;探讨如何利用 EXPLAIN 分析查询执行计划&#xff0c;并分享索引优化的最佳实践。 一、EXPLAIN 工具简介 EXPLAIN …...

Flume——进阶(agent特性+三种结构:串联,多路复用,聚合)

目录 agent特性ChannelSelector描述&#xff1a; SinkProcessor描述&#xff1a; 串联架构结构图解定义与描述配置示例Flume1&#xff08;监测端node1&#xff09;Flume3&#xff08;接收端node3&#xff09;启动方式 复制和多路复用结构图解定义描述配置示例node1node2node3启…...

ragflow连ollama时出现的Bug

ragflow和ollama连接后&#xff0c;已经添加了两个模型但是ragflow仍然一直warn&#xff1a;Please add both embedding model and LLM in Settings &#xff1e; Model providers firstly.这里可能是我一开始拉取的镜像容器太小&#xff0c;容不下当前添加的模型&#xff0c;导…...

基于centos7.7编译Redis6.0

背景&#xff1a; OS&#xff1a;CentOs 7.7 Redis: 6.0.6 编译构建报错如下&#xff1a; In file included from server.c:30:0: server.h:1044:5: error: expected specifier-qualifier-list before ‘_Atomic’_Atomic unsigned int lruclock; /* Clock for LRU eviction …...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言&#xff1a; 最近在做行为检测相关的模型&#xff0c;用的是时空图卷积网络&#xff08;STGCN&#xff09;&#xff0c;但原有kinetic-400数据集数据质量较低&#xff0c;需要进行细粒度的标注&#xff0c;同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?

在工业自动化持续演进的今天&#xff0c;通信网络的角色正变得愈发关键。 2025年6月6日&#xff0c;为期三天的华南国际工业博览会在深圳国际会展中心&#xff08;宝安&#xff09;圆满落幕。作为国内工业通信领域的技术型企业&#xff0c;光路科技&#xff08;Fiberroad&…...