当前位置: 首页 > news >正文

torch.optim.lr_scheduler.ReduceLROnPlateau

torch.optim.lr_scheduler.ReduceLROnPlateau 是 PyTorch 中的一种学习率调度器,主要用于在模型训练过程中根据某些指标(如验证损失)动态调整学习率。它是一种基于性能指标动态调整学习率的策略,而不是预定义的固定时间调整。


主要功能

ReduceLROnPlateau 会监控某个指标(如验证损失),当该指标在若干个 epoch 中停止改善时(即进入"平台"期),将学习率按一定的比例降低,从而帮助模型更好地收敛。


常用参数

初始化 ReduceLROnPlateau 时,可以设置以下参数:

  1. optimizer:

    • 目标优化器(如 SGD, Adam),学习率调度器会更新此优化器中的学习率。
  2. mode:

    • 决定监控指标是否需要"最小化"或"最大化"。
    • 'min':监控指标越小越好(例如验证损失)。
    • 'max':监控指标越大越好(例如验证精度)。
  3. factor:

    • 学习率降低的比例,新的学习率为 lr = lr * factor
    • 默认值:0.1(学习率每次降低为原来的 10%)。
  4. patience:

    • 容忍的连续 epoch 数,在这段时间内监控指标没有改善,但不会立即降低学习率。
    • 默认值:10
  5. threshold:

    • 判断监控指标是否改善的阈值。
    • 默认值:1e-4(小于这个值的变化会被认为没有改善)。
  6. threshold_mode:

    • 'rel':相对变化(即与前一个值相比的比例变化)。
    • 'abs':绝对变化。
  7. cooldown:

    • 每次调整学习率后等待的 epoch 数,在此期间不会检测指标改善。
    • 默认值:0
  8. min_lr:

    • 学习率的下限,确保学习率不会被降低到此值以下。
    • 默认值:0
  9. eps:

    • 学习率变化的最小值,防止浮点数精度问题导致学习率更新失败。
    • 默认值:1e-8

常见用法

以下是使用 ReduceLROnPlateau 的典型步骤:

  1. 初始化优化器和调度器

    import torch
    import torch.nn as nn
    import torch.optim as optim# 假设有一个模型和一个损失函数
    model = nn.Linear(10, 1)
    criterion = nn.MSELoss()
    optimizer = optim.Adam(model.parameters(), lr=0.01)# 初始化调度器
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10)
    
  2. 在训练循环中调用
    每个 epoch 完成后,使用验证集的性能指标来调用调度器:

    for epoch in range(50):# 训练过程model.train()for data, target in train_loader:optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()# 验证过程model.eval()val_loss = 0with torch.no_grad():for data, target in val_loader:output = model(data)val_loss += criterion(output, target).item()# 调度器监控验证损失scheduler.step(val_loss)# 打印当前学习率print(f"Epoch {epoch+1}: Learning rate: {optimizer.param_groups[0]['lr']}")
    

工作原理

  1. 监控指标

    • 每次调用 scheduler.step(metric),都会检查传入的 metric(如验证损失或验证精度)是否在过去 patience 个 epoch 中有所改善。
  2. 判断是否降低学习率

    • 根据 modethreshold,决定当前指标是否"足够好"。
    • 如果监控指标在 patience 个 epoch 内未改善,则将学习率乘以 factor
  3. 冷却期

    • 调整学习率后,进入 cooldown 冷却期,冷却期内不会监控指标。
  4. 最小学习率限制

    • 如果新的学习率低于 min_lr,则不再继续降低。

代码示例

假设验证损失在第 15 个 epoch 开始停滞:

Epoch 10: val_loss = 0.50, lr = 0.01
Epoch 11: val_loss = 0.49, lr = 0.01
...
Epoch 15: val_loss = 0.48, lr = 0.01  (No significant improvement for 10 epochs)
Epoch 16: val_loss = 0.47, lr = 0.001 (Reduce learning rate by factor of 0.1)
...
Epoch 25: val_loss = 0.46, lr = 0.001 (No significant improvement for 10 epochs)
Epoch 26: val_loss = 0.45, lr = 0.0001 (Reduce learning rate again)

注意事项

  1. 适用场景

    • 常用于训练到一定阶段后,指标改善速度减慢时,动态调整学习率有助于提高模型性能。
    • 尤其适合学习率对训练敏感的优化器(如 SGD)。
  2. 与其他调度器对比

    • StepLRCosineAnnealingLR 是预定义的固定时间调整学习率。
    • ReduceLROnPlateau 是基于性能指标的动态调整,更加灵活。
  3. 使用正确的监控指标

    • 确保传入的指标与训练目标一致(如验证损失应与 mode='min' 一起使用)。

通过动态调整学习率,ReduceLROnPlateau 可以帮助优化训练过程,特别是在模型性能进入瓶颈阶段时,非常有效。

相关文章:

torch.optim.lr_scheduler.ReduceLROnPlateau

torch.optim.lr_scheduler.ReduceLROnPlateau 是 PyTorch 中的一种学习率调度器,主要用于在模型训练过程中根据某些指标(如验证损失)动态调整学习率。它是一种基于性能指标动态调整学习率的策略,而不是预定义的固定时间调整。 主要…...

Linux 搭建ftp服务

FTP是什么? FTP(文件传输协议,File Transfer Protocol)是一种用于在计算机之间传输文件的网络协议。它基于客户端-服务器模型,允许用户从远程服务器上传、下载和管理文件。 FTP的主要作用 文件传输:FTP最基…...

阳光电源嵌入式面试题及参考答案

讲一讲声明变量的时候应该注意哪些内容。 在声明变量时,首先要考虑变量的类型。不同的数据类型有不同的用途和占用的存储空间大小。例如,基本数据类型如整型(int)通常占用 4 个字节,用来存储整数;而浮点型(float)用于存储带有小数部分的数字,占用 4 个字节,双精度浮点…...

PS的功能学习(形状、文字、图层)

关于图层 如果是在一个已经有其他图层的文档界面下,拉一张新图进来,就会自动转换成智能对象 注意,放大之后再栅格化,是会根据原本的防矢量图规则放大之后,再变回像素图层,这个变回来的像素图层是“在原像素…...

项目实例_FashionMNIST_CNN

前言 提醒: 文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。 其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展…...

Ubuntu 安装 web 服务器

安装 apach sudo apt install apache2 -y 查看 apach2 版本号 apache2 -v 检查是否启动服务器 sudo service apache2 status 检查可用的 ufw 防火墙应用程序配置 sudo ufw app list 关闭防火墙 sudo ufw disable 更改允许通过端口流量 sudo ufw allow Apache Full 开启…...

burp的编解码,日志,比较器

声明! 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下,如涉及侵权马上删除文章,笔记只是方便各位师傅的学习和探讨,文章所提到的网站以及内容,只做学习交流,其他均与本人以及泷羽sec团队无关&a…...

2.1、模版语法

2.1.1、插值语法 1、代码示例 <body><!-- 准备容器 --><div id"app"><!-- 在data中声明的 --><!--1、 data中声明的变量 --><h1>{{msg}}</h1><h1>{{sayHello()}}</h1><!-- 不在data中的变量不可以 -->…...

最小二乘法拟合出二阶响应面近似模型

背景&#xff1a;根据样本试验数据拟合出二阶响应面近似模型&#xff08;正交二次型&#xff09;&#xff0c;并使用决定系数R和调整的决定系数R_adj来判断二阶响应面模型的拟合精度。 1、样本数据&#xff08;来源&#xff1a;硕士论文《航空发动机用W形金属密封环密封性能分析…...

【汽车】-- 常见的汽车悬挂系统

汽车悬挂系统是车辆的重要组成部分&#xff0c;其主要功能是连接车轮和车身&#xff0c;减缓路面颠簸对车身的影响&#xff0c;提高行驶的平顺性、舒适性和操控性。以下是常见的汽车悬挂系统类型及其特点&#xff1a; 1. 独立悬挂系统 每个车轮可以独立上下运动&#xff0c;不…...

VMware Workstation Pro 17 下载 以及 安装 Ubuntu 20.04.6 Ubuntu 启用 root 登录

1、个人免费版本 VMware Workstation Pro 17 下载链接怎么找&#xff1f;直接咕咕 VMware 找到如下链接。链接如下&#xff1a;Workstation 和 Fusion 对个人使用完全免费&#xff0c;企业许可转向订阅 - VMware 中文博客 点进去链接之后你会看到如下&#xff0c;注意安装之后仍…...

记录ubuntu22.04重启以后无法获取IP地址的问题处理方案

现象描述&#xff1a;我的虚拟机网络设置为桥接模式&#xff0c;输入ifconfig只显示127.0.0.1&#xff0c;不能连上外网。&#xff0c;且无法上网&#xff0c;用ifconfig只有如下显示&#xff1a; 1、sudo -i切换为root用户 2、输入dhclient -v 再输入ifconfig就可以看到多了…...

linux 删除系统特殊的的用户帐号

禁止所有默认的被操作系统本身启动的且不需要的帐号&#xff0c;当你第一次装上系统时就应该做此检查&#xff0c;Linux提供了各种帐号,你可能不需要&#xff0c;如果你不需要这个帐号,就移走它&#xff0c;你有的帐号越多,就越容易受到攻击。 1.为删除你系统上的用户,用下面的…...

core Webapi jwt 认证

core cookie 验证 Web API Jwt 》》》》用户信息 namespace WebAPI001.Coms {public class Account{public string UserName { get; set; }public string UserPassword { get; set; }public string UserRole { get; set; }} }》》》获取jwt类 using Microsoft.AspNetCore.Mvc…...

【Redis】Redis基础——Redis的安装及启动

一、初识Redis 1. 认识NoSQL 数据结构&#xff1a;对于SQL来说&#xff0c;表是有结构的&#xff0c;如字段约束、字段存储大小等。 关联性&#xff1a;SQL 的关联性体现在两张表之间可以通过外键&#xff0c;将两张表的数据关联查询出完整的数据。 查询方式&#xff1a; 2.…...

Oracle Recovery Tools工具一键解决ORA-00376 ORA-01110故障(文件offline)---惜分飞

客户在win上面迁移数据文件,由于原库非归档,结果导致有两个文件scn不一致,无法打开库,结果他们选择offline文件,然后打开数据库 Wed Dec 04 14:06:04 2024 alter database open Errors in file d:\app\administrator\diag\rdbms\orcl\orcl\trace\orcl_ora_6056.trc: ORA-01113:…...

常用环境部署(二十四)——Docker部署开源物联网平台Thingsboard

1、Docker和Docker-compose安装 参考网址如下&#xff1a; CENTOS8.0安装DOCKER&DOCKER-COMPOSE以及常见报错解决_centos8安装docker-compose-CSDN博客 2、 Thingsboard安装 &#xff08;1&#xff09;在/home目录下创建docker-compose.yml文件 vim /home/docker-com…...

SqlServer Doris Flink SQL 类型映射关系

SqlServer 对应 Flink SQL 数据类型映射关系 SQL Server TypeFlink SQL Typechar(n)CHAR(n)varchar(n)VARCHAR(n)nvarchar(n)VARCHAR(n)nchar(n)VARCHAR(n)textSTRINGntextSTRINGxmlSTRINGdecimal(p, s)DECIMAL(p, s)moneyDECIMAL(p, s)smallmoneyDECIMAL(p, s)numericNUMERIC…...

Java 中的方法重写

在 Java 中&#xff0c;方法重写&#xff08;Method Overriding&#xff09;是面向对象编程的一个重要概念&#xff0c;它指的是子类中存在一个与父类中相同名称、相同参数列表和相同返回类型的方法。方法重写使得子类可以提供特定的实现&#xff0c;从而覆盖&#xff08;或改变…...

v-for遍历多个el-popover;el-popover通过visible控制显隐;点击其他隐藏el-popover

场景:el-popover通过visible控制显隐;同时el-popover是遍历生成的多个。 原文档的使用visible后就不能点击其他地方使其隐藏;同时解决实现点击其他区域隐藏 <template><div><template v-for="(item,index) in arr" :key="index"><…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...