python学opencv|读取图像(九)用numpy创建黑白相间灰度图
【1】引言
前述学习过程中,掌握了用numpy创建矩阵数据,把所有像素点的BGR取值设置为0,然后创建纯黑灰度图的方法,具体链接为:
python学opencv|读取图像(八)用numpy创建纯黑灰度图-CSDN博客
在更早的学习进程中,我们了解到opencv对灰度图的颜色BGR取值都是[0,255],链接为:
python学opencv|读取图像(六)读取图像像素RGB值-CSDN博客
为此,我们尝试优化BGR取值,让其逐渐变化,显示黑白相间的灰度图。
【2】代码测试
【2.1】设置BGR=255
在纯黑灰度图的设计中,所有BGR=0,在这里我们先做修改,将BGR改为最大值255,获得下述代码:
import numpy as np #引入numpy模块
import cv2 as cv #引入cv2模块
from imageio.v2 import imwrite#定义图像
t=np.arange(300,600,20) #定义变量,在[300,600)区间,每隔20取一个值
t_max=np.max(t) #取变量最大值作为像素大小
print('t_max=',t_max) #输出最大值
image=np.zeros([t_max,t_max],np.uint8) #定义一个竖直和水平像素均为t最大值的全0矩阵
image[80:500,80:500]=255 #设置动态像素#显示和保存定义的图像
cv.imshow('display-pho',image) #显示图像
cv.imwrite('image-2.jpg',image) #保存图像
cv.waitKey() #图像不关闭
cv.destroyAllWindows() #释放所有窗口
上述代码中,在垂直和水平像素区间均取[80:500]的范围内,设置BGR=255,相关代码为:
image[80:500,80:500]=255 #设置动态像素
运行后的输出图像为:
图1
此时我们看到黑白相间的灰度图。
在区间[0,255]范围内,BGR=0时为纯黑色图;BGR=255时为纯白色图。
【2.2】设置BGR为变量
进一步,修改BGR为变量,对应的代码为:
for i in range(80,500,10):for j in range(80,500,20):image[i:i+5,j:j+5]=250*np.sin(0.1*i)+250*np.tanh(0.1*i) #设置动态像素print('i=',i,'j=',j)print('image[i,j]=',image[i,j])
此时获得的图像为:
图2
对应的完整代码为:
import numpy as np #引入numpy模块
import cv2 as cv #引入cv2模块
from imageio.v2 import imwrite#定义图像
t=np.arange(300,600,20) #定义变量,在[300,600)区间,每隔20取一个值
t_max=np.max(t) #取变量最大值作为像素大小
print('t_max=',t_max) #输出最大值
image=np.zeros([t_max,t_max],np.uint8) #定义一个竖直和水平像素均为t最大值的全0矩阵
for i in range(80,500,10):for j in range(80,500,20):image[i:i+5,j:j+5]=250*np.sin(0.1*i)+250*np.tanh(0.1*i) #设置动态像素print('i=',i,'j=',j)print('image[i,j]=',image[i,j])#显示和保存定义的图像
cv.imshow('display-pho',image) #显示图像
cv.imwrite('image-3.jpg',image) #保存图像
cv.waitKey() #图像不关闭
cv.destroyAllWindows() #释放所有窗口
有时候我们系那个大胆尝试一下颜色动态变化的图像,这个时候可以定义一个随机矩阵:
k=np.random.randint(0,255,[t_max,t_max]) #创建一个随机数矩阵
然后命令所有的BGR和随机矩阵的数据一一对应:
for i in range(80,500,10):for j in range(80,500,20):image[i:i+5,j:j+5]=k[i,j]#设置动态像素print('i=',i,'j=',j)print('image[i,j]=',image[i,j])
这时候就会得到一个类似于万家灯火的灰度图:
图3
此时对应的完整代码为:
import numpy as np #引入numpy模块
import cv2 as cv #引入cv2模块
from imageio.v2 import imwrite#定义图像
t=np.arange(300,600,20) #定义变量,在[300,600)区间,每隔20取一个值
t_max=np.max(t) #取变量最大值作为像素大小
print('t_max=',t_max) #输出最大值
image=np.zeros([t_max,t_max],np.uint8) #定义一个竖直和水平像素均为t最大值的全0矩阵
k=np.random.randint(0,255,[t_max,t_max]) #创建一个随机数矩阵
print('k=',k)
for i in range(80,500,10):for j in range(80,500,20):image[i:i+5,j:j+5]=k[i,j]#设置动态像素print('i=',i,'j=',j)print('image[i,j]=',image[i,j])#显示和保存定义的图像
cv.imshow('display-pho',image) #显示图像
cv.imwrite('image-3.jpg',image) #保存图像
cv.waitKey() #图像不关闭
cv.destroyAllWindows() #释放所有窗口
【2.3】代码细节
需要注意的是 ,image[i:i+5,j:j+5]的目的是为了设置白色或者黑色线条的长度和宽度。
i:i+5表示[i,i+5]这个区间内,竖直方向的像素范围;
j:j+5表示[j,j+5]这个区间内,水平方向的像素范围。
通过修改这个区间内的数据,可以实现不同像素范围内的BGR设置。
【3】总结
掌握了用numpy创建黑白相间灰度图的技巧。
相关文章:

python学opencv|读取图像(九)用numpy创建黑白相间灰度图
【1】引言 前述学习过程中,掌握了用numpy创建矩阵数据,把所有像素点的BGR取值设置为0,然后创建纯黑灰度图的方法,具体链接为: python学opencv|读取图像(八)用numpy创建纯黑灰度图-CSDN博客 在…...
AtCoder Beginner Contest 383
C - Humidifier 3 Description 一个 h w h \times w hw 的网格,每个格子可能是墙、空地或者城堡。 一个格子是好的,当且仅当从至少一个城堡出发,走不超过 d d d 步能到达。(只能上下左右走,不能穿墙)&…...
20. 内置模块
一、random模块 random 模块用来创建随机数的模块。 random.random() # 随机生成一个大于0且小于1之间的小数 random.randint(a, b) # 随机生成一个大于等于a小于等于b的随机整数 random.uniform(a, b) …...

《知识拓展 · 统一建模语言UML》
📢 大家好,我是 【战神刘玉栋】,有10多年的研发经验,致力于前后端技术栈的知识沉淀和传播。 💗 🌻 CSDN入驻不久,希望大家多多支持,后续会继续提升文章质量,绝不滥竽充数…...

计算机网络-Wireshark探索ARP
使用工具 Wiresharkarp: To inspect and clear the cache used by the ARP protocol on your computer.curl(MacOS)ifconfig(MacOS or Linux): to inspect the state of your computer’s network interface.route/netstat: To inspect the routes used by your computer.Brows…...

减少30%人工处理时间,AI OCR与表格识别助力医疗化验单快速处理
在医疗行业,化验单作为重要的诊断依据和数据来源,涉及大量的文字和表格信息,传统的手工输入和数据处理方式不仅繁琐,而且容易出错,给医院的运营效率和数据准确性带来较大挑战。随着人工智能技术的快速发展,…...

1.2.3计算机软件
一个完整的计算机系统由硬件和软件组成,用户使用软件,而软件运行在硬件之上,软件进一步的划分为两类:应用软件和系统软件。普通用户通常只会跟应用软件打交道。应用软件是为了解决用户的某种特定的需求而研发出来的。除了每个人都…...
二、uni-forms
避坑指南:uni-forms表单在uni-app中的实践经验-CSDN博客...

Android13开机向导
文章目录 前言需求-场景第三方资料说明需求思路按照平台 思路 从配置上去 feature换个思路,去feature。SimMissingActivity 判断跳过逻辑SetupWizardUtils 判断SIM 、 hasSystemFeature FEATURE_TELEPHONYPackageManager.FEATURE_TELEPHONYApplicationPackageManage…...
软件测试丨Appium 源码分析与定制
在本文中,我们将深入Appium的源码,探索它的底层架构、定制化使用方法和给软件测试带来的优势。我们将详细介绍这些技术如何解决实际问题,并与大家分享一些实用的案例,以帮助读者更好地理解和应用这一技术。 Appium简介 什么是App…...

1.网络知识-IP与子网掩码的关系及计算实例
IP与子网掩码 说实话,之前没有注意过,今天我打开自己的办公地电脑,看到我的网络配置如下: 我看到我的子网掩码是255.255.254.0,我就奇怪了,我经常见到的子网掩码都是255.255.255.0啊?难道公司配…...
Android中Gradle常用配置
前言 本文记录了一些常用的gradle配置,基本上都是平时开发中可能会使用到的,如果有新内容会不定时更新,附官网 1.依赖库版本写法 不推荐写法: dependencies {compile com.example.code.abc:def:2. // 不推荐的写法 }这样写虽然可…...

Linux操作系统3-文件与IO操作2(文件描述符fd与文件重定向)
上篇文章:Linux操作系统3-文件与IO操作1(从C语言IO操作到系统调用)-CSDN博客 本篇代码Gitee仓库:myLerningCode 橘子真甜/Linux操作系统与网络编程学习 - 码云 - 开源中国 (gitee.com) 本篇重点:文件描述符fd与文件重定向 目录 一. 文件描述…...
k8s调度策略
调度策略 binpack(装箱策略) Binpacking策略(又称装箱问题)是一种优化算法,用于将物品有效地放入容器(或“箱子”)中,使得所使用的容器数量最少,Kubernetes等集群管理系…...

uniapp中父组件传参到子组件页面渲染不生效问题处理实战记录
上篇文件介绍了,父组件数据更新正常但是页面渲染不生效的问题,详情可以看下:uniapp中父组件数组更新后与页面渲染数组不一致实战记录 本文在此基础上由于新增需求衍生出新的问题.本文只记录一下解决思路. 下面说下新增需求方便理解场景: 商品信息设置中添加抽奖概率设置…...

螺丝螺帽缺陷检测识别数据集,支持yolo,coco,voc三种格式的标记,一共3081张图片
螺丝螺帽缺陷检测识别数据集,支持yolo,coco,voc三种格式的标记,一共3081张图片 3081总图像数 数据集分割 训练组90% 2781图片 有效集7% 220图片 测试集3% 80图片 预处理…...

一个简单带颜色的Map
越简单 越实用。越少设计,越易懂。 需求背景: 创建方法,声明一个hashset, 元素为 {“#DE3200”, “#FA8C00”, “#027B00”, “#27B600”, “#5EB600”} 。 对应的key为 key1 、key2、key3、key4、key5。 封装该方法,…...

kubeadm安装K8s集群之基础环境配置
系列文章目录 1.kubeadm安装K8s集群之基础环境配置 2.kubeadm安装K8s集群之高可用组件keepalivednginx 3.kubeadm安装K8s集群之master节点加入 4.kubeadm安装K8s集群之worker1节点加入 kubeadm安装K8s集群基础环境配置 1.首先确保所有机器可以通信,然后配置主机host…...

前端实现在线预览excel文件
在前端开发中,经常会遇到需要在线预览各种文件的需求。本文将介绍如何使用前端技术实现在线预览 Excel 文件的功能。 一、基于微软office服务的excel预览 获取要预览的 Excel 文件的 URL(例如存储在 OneDrive 或 SharePoint 上的文件)。 使…...

关于idea-Java-servlet-Tomcat-Web开发中出现404NOT FOUND问题的解决
在做web项目时,第一次使用servlet开发链接前端和后端的操作,果不其然,遇到了诸多问题,而遇到最多的就是运行项目打开页面时出现404NOT FOUND的情况。因为这个问题我也是鼓捣了好久,上网查了许多资料才最终解决…...

网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...

关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...

聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...