scala中如何解决乘机排名相关的问题
任务目标: 1.计算每个同学的总分和平均分
2.按总分排名,取前三名
3.按单科排名,取前三名
好的,我们可以用Scala来完成这个任务。下面是一个简单的示例代码,它将演示如何实现这些功能:
// 假设我们有一个学生成绩的列表,每个学生的成绩是一个包含姓名和三科成绩的元组
val scores = List(("张三", 85, 90, 75),("李四", 90, 85, 95),("王五", 75, 80, 90),("赵六", 80, 75, 85)
)// 1. 计算每个同学的总分和平均分
val totalAndAverageScores = scores.map { case (name, math, english, physics) =>val total = math + english + physicsval average = total.toDouble / 3(name, total, average)
}// 打印每个同学的总分和平均分
totalAndAverageScores.foreach { case (name, total, average) =>println(s"$name, 总分: $total, 平均分: $average")
}// 2. 按总分排名,取前三名
val topThreeByTotal = totalAndAverageScores.sortBy(- _.2).take(3)// 打印总分排名前三的学生
println("总分排名前三的学生:")
topThreeByTotal.foreach { case (name, total, average) =>println(s"$name: 总分 $total")
}// 3. 按单科排名,取前三名
// 数学
val topThreeMath = scores.sortBy(- _._2).take(3)
// 英语
val topThreeEnglish = scores.sortBy(- _._3).take(3)
// 物理
val topThreePhysics = scores.sortBy(- _._4).take(3)// 打印单科排名前三的学生
println("\n数学排名前三的学生:")
topThreeMath.foreach { case (name, math, _, _) => println(s"$name: $math") }println("\n英语排名前三的学生:")
topThreeEnglish.foreach { case (name, _, english, _) => println(s"$name: $english") }println("\n物理排名前三的学生:")
topThreePhysics.foreach { case (name, _, _, physics) => println(s"$name: $physics") }
这段代码首先定义了一个包含学生姓名和三科成绩的列表。然后,它计算每个学生的总分和平均分,并打印出来。接着,它按照总分对学生进行排序,并打印出总分排名前三的学生。最后,它分别对数学、英语和物理三科成绩进行排序,并打印出每个科目排名前三的学生。
相关文章:
scala中如何解决乘机排名相关的问题
任务目标: 1.计算每个同学的总分和平均分 2.按总分排名,取前三名 3.按单科排名,取前三名 好的,我们可以用Scala来完成这个任务。下面是一个简单的示例代码,它将演示如何实现这些功能: // 假设我们有一个…...
OpenCV相机标定与3D重建(10)眼标定函数calibrateHandEye()的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 计算手眼标定: g T c _{}^{g}\textrm{T}_c gTc cv::calibrateHandEye 是 OpenCV 中用于手眼标定的函数。该函数通过已知的机器人…...
Hadoop生态圈框架部署(九-2)- Hive HA(高可用)部署
文章目录 前言一、Hive部署(手动部署)下载Hive1. 上传安装包2. 解压Hive安装包2.1 解压2.2 重命名2.3 解决冲突2.3.1 解决guava冲突2.3.2 解决SLF4J冲突 3. 配置Hive3.1 配置Hive环境变量3.2 修改 hive-site.xml 配置文件3.3 配置MySQL驱动包3.3.1 下在M…...
docker 相关操作
1. 以下是一些常见的 Docker 命令: docker --version显示安装的 Docker 版本。 docker pull <image_name>从 Docker Hub 或其他镜像仓库下载镜像。 docker build -t <image_name> <path>从指定路径的 Dockerfile 构建 Docker 镜像。 docker i…...
AI作图效率高,亲测ToDesk、顺网云、青椒云多款云电脑AIGC实践创作
一、引言 随着人工智能生成内容(AIGC)的兴起,越来越多的创作者开始探索高效的文字处理和AI绘图方式,而云电脑也正成为AIGC创作中的重要工具。相比于传统的本地硬件,云电脑在AIGC场景中展现出了显著的优势,…...
【代码随想录day57】【C++复健】 53. 寻宝(prim算法);53. 寻宝(kruskal算法)
53. 寻宝(prim算法) 好像在研究生的算法课上学过prim算法和kruskal算法,不过当时只是了解了一下大致的概念和流程,并没有涉及到如何去写代码的部分,今天也算是学习了一下这两个算法的代码应该如何去实现,还…...
C++中多态
1) 什么是多态性?C中如何实现多态? 多态性是指通过基类指针或引用调用派生类的函数,实现不同的行为 多态性可以提高代码的灵活性和可扩展性,使程序能够根据不同的对象类型执行不同的操作。 2)C中如何实现多态&#…...
【实现多网卡电脑的网络连接共享】
电脑A配备有两张网卡,分别命名为eth0和eth1(对于拥有超过两张网卡的情况,解决方案相似)。其中,eth0网卡能够连接到Internet,而eth1网卡则通过网线直接与另一台电脑B相连(在实际应用中࿰…...
算力介绍与解析
算力(Computing Power)是指计算机系统在单位时间内处理数据和执行计算任务的能力。算力是衡量计算机性能的重要指标,直接影响计算任务的速度和效率。 算力的分类和单位 a. 基础算力:以CPU的计算能力为主。适用于各个领域的计算。…...
解决 MyBatis 中空字符串与数字比较引发的条件判断错误
问题复现 假设你在 MyBatis 的 XML 配置中使用了如下代码: <if test"isCollect ! null"><choose><when test"isCollect 1">AND exists(select 1 from file_table imgfile2 where task.IMAGE_SEQimgfile2.IMAGE_SEQ and im…...
python 词向量的代码解读 self.word_embeds = nn.Embedding(vocab_size, embedding_dim) 解释下
在PyTorch中,nn.Embedding 是一个用于将稀疏的离散数据表示为密集的嵌入向量的模块。这在自然语言处理(NLP)任务中非常常见,例如在处理单词或字符时,我们通常需要将这些离散的标识符转换为可以被神经网络处理的连续值向…...
记一次:使用C#创建一个串口工具
前言:公司的上位机打不开串口,发送的时候设备总是关机,因为和这个同事关系比较好,编写这款软件是用C#编写的,于是乎帮着解决了一下(是真解决了),然后整理了一下自己的笔记 一、开发…...
Android Studio新版本的一个资源id无法找到的bug解决
Android Studio新版本的一个资源id无法找到的bug解决 文章目录 Android Studio新版本的一个资源id无法找到的bug解决一、前言二、Android Studio的无法获取到资源id的bug1、一段简单的Java代码1、错误现象2、错误解决方法 三、其他1、小结2、gradle.properties文件 其他相关属性…...
Datawhale AI冬令营(第一期)--零基础定制你的专属大模型
本文主要简述如何快速完成和一些小细节 第一步下载嬛嬛数据集 数据来源:self-llm/dataset/huanhuan.json at master datawhalechina/self-llm GitHub 注意:1.一定是数据集下载完成一定是.json结尾的 2.这个是github的网址,可能会遇到打不开的情况 …...
LLMs之APE:基于Claude的Prompt Improver的简介、使用方法、案例应用之详细攻略
LLMs之APE:基于Claude的Prompt Improver的简介、使用方法、案例应用之详细攻略 目录 Prompt Improver的简介 0、背景痛点 1、优势 2、实现思路 Prompt优化 示例管理 提示词评估 Prompt Improver的使用方法 1、使用方法 Prompt Improver的案例应用 1、Kap…...
【Unity人形布娃娃插件】Ragdoll Animator
Ragdoll Animator 是一款为 Unity 引擎开发的插件,专注于让角色在运行时动态地切换到布娃娃物理系统(Ragdoll Physics)。该插件帮助开发者轻松创建逼真的角色动画过渡效果,尤其适用于需要角色碰撞、摔倒、受击或其他物理反应的场景…...
跨团队协作中目标一致性至关重要
在团队协作的复杂拼图里,目标一致性是那根贯穿始终的主线,缺之则拼图难成,团队亦难达预期之效。 且看这样一个实例:部门承接了业务方一项紧急的数据处理需求,此任务犹如一座亟待攀登的险峰,落在了 A 团队…...
Excel的文件导入遇到大文件时
Excel的文件导入向导如何把已导入数据排除 入起始行,选择从哪一行开始导入。 比如,前两行已经导入了,第二次导入的时候排除前两行,从第三行开始,就将导入起始行设置为3即可,且不勾选含标题行。 但遇到大文…...
使用字典进行动态编程
在你的程序中,你想要执行各种计算,例如计算卫星的总数。 此外,当你进行更高级的编程时,你可能会发现你需要从文件或数据库中加载此类信息,而不是直接编码到 Python 中。 为了帮助支持这些场景,Python 使你…...
机器学习02-发展历史补充
机器学习02-发展历史补充 文章目录 机器学习02-发展历史补充1-机器学习个人理解1-初始阶段:统计学习和模式识别(20世纪50年代至80年代)2-第二阶段【集成时代】【核方法】(20世纪90年代至2000年代初期)3-第三阶段【特征…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
反向工程与模型迁移:打造未来商品详情API的可持续创新体系
在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
