【OpenCV】模板匹配
理论
模板匹配是一种在较大图像中搜索和查找模板图像位置的方法。为此,OpenCV 带有一个函数 cv.matchTemplate() 。它只是在输入图像上滑动模板图像(如在 2D 卷积中),并比较模板图像下的模板和输入图像的补丁。在 OpenCV 中实现了几种比较方法。它返回一个灰度图像,其中每个像素表示该像素的邻域与模板匹配的程度。
如果输入图像的大小(WxH)且模板图像的大小(wxh),则输出图像的大小为(W-w + 1,H-h + 1)。得到结果后,可以使用 cv.minMaxLoc() 函数查找最大/最小值的位置。将其作为矩形的左上角,取(w,h)作为矩形的宽度和高度。那个矩形是你的模板区域。
如果你使用cv.TM_SQDIFF函数作为比较的方法, 最小值作为匹配值。
OpenCV 中的模板匹配
在这里,作为一个例子,我们将在梅西的照片中搜索他的面部,因此我创建了一个如下的模板:
我们将尝试所有的比较方法,看看它们的结果如何:
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('messi5.jpg',0)
img2 = img.copy()
template = cv.imread('template.jpg',0)
w, h = template.shape[::-1]
# All the 6 methods for comparison in a list
methods = ['cv.TM_CCOEFF', 'cv.TM_CCOEFF_NORMED', 'cv.TM_CCORR','cv.TM_CCORR_NORMED', 'cv.TM_SQDIFF', 'cv.TM_SQDIFF_NORMED']
for meth in methods:img = img2.copy()method = eval(meth)# Apply template Matchingres = cv.matchTemplate(img,template,method)min_val, max_val, min_loc, max_loc = cv.minMaxLoc(res)# If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimumif method in [cv.TM_SQDIFF, cv.TM_SQDIFF_NORMED]:top_left = min_locelse:top_left = max_locbottom_right = (top_left[0] + w, top_left[1] + h)cv.rectangle(img,top_left, bottom_right, 255, 2)plt.subplot(121),plt.imshow(res,cmap = 'gray')plt.title('Matching Result'), plt.xticks([]), plt.yticks([])plt.subplot(122),plt.imshow(img,cmap = 'gray')plt.title('Detected Point'), plt.xticks([]), plt.yticks([])plt.suptitle(meth)plt.show()
请参阅以下结果:
- cv.TM_CCOEFF
- cv.TM_CCOEFF_NORMED
- cv.TM_CCORR
- cv.TM_CCORR_NORMED
- cv.TM_SQDIFF
- cv.TM_SQDIFF_NORMED
你可以看到使用 **cv.TM_CCORR**的结果并不像我们预期的那样好。
模板与多个对象匹配
在上一节中,我们搜索了梅西的脸部图像,该图像仅在图中出现一次。假设您正在搜索的对象在图中出现了多次, cv.minMaxLoc() 将不会为你提供所有的匹配点。在这种情况下,我们将使用阈值。所以在这个例子中,我们将使用着名游戏 Mario 的截图,并在其中找到硬币。
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img_rgb = cv.imread('mario.png')
img_gray = cv.cvtColor(img_rgb, cv.COLOR_BGR2GRAY)
template = cv.imread('mario_coin.png',0)
w, h = template.shape[::-1]
res = cv.matchTemplate(img_gray,template,cv.TM_CCOEFF_NORMED)
threshold = 0.8
loc = np.where( res >= threshold)
for pt in zip(*loc[::-1]):cv.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (0,0,255), 2)
cv.imwrite('res.png',img_rgb)
结果:
apachecn.github.io/opencv-doc-zh/#/
相关文章:

【OpenCV】模板匹配
理论 模板匹配是一种在较大图像中搜索和查找模板图像位置的方法。为此,OpenCV 带有一个函数 cv.matchTemplate() 。它只是在输入图像上滑动模板图像(如在 2D 卷积中),并比较模板图像下的模板和输入图像的补…...

黑马商城微服务复习(5)
MQ 一、同步调用和异步调用1. 同步调用2. 异步调用 二、RabbitMQ1. 基础使用2. 实际操作 怎么用?3. RabbitMQ虚拟主机 数据隔离4. 在JAVA中实现RabbitMQ5. 交换机种类 一、同步调用和异步调用 1. 同步调用 微服务一旦拆分,必然涉及到服务之间的相互调用ÿ…...

云原生基础设施指南:精通 Kubernetes 核心与高级用法
1. 云原生的诞生 随着互联网规模的不断增长,以及企业对敏捷开发、快速交付和高可用性的需求日益增强,传统的单体架构逐渐暴露出局限性,难以满足现代业务对动态扩展和高效迭代的要求。为此,云原生应运而生。 云原生是为云计算时代…...

人工智能概要
目录 前言1.什么是人工智能(Artificial Intelligence, AI)2.人工智能发展的三次浪潮2.1 人工智能发展的第一次浪潮2.2 人工智能发展的第二次浪潮2.3 人工智能发展的第三次浪潮 3.人工智能发展的必备三要素3.1 数据3.2 算法(algorithm…...

qt QCommandLineParser详解
1、概述 QCommandLineParser是Qt框架中提供的一个类,专门用于解析命令行参数。它简化了命令行参数的处理过程,使得开发者能够轻松定义、解析和验证命令行选项和参数。QCommandLineParser适用于需要从命令行获取输入的控制台应用程序,以及需要…...
力扣 K个一组翻转链表
K个一组翻转链表 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(nullptr) {}* ListNode(int x, ListNode *next) : val(x), next(ne…...

cnocr配置及训练测试
cnocr配置及训练测试 1,相关链接2,已有模型调用测试(1)下载相关模型(2)Cnstd文本检测模型(3)模型调用解析脚本 3,自定义数据集训练测试(1)标签转换…...
解决 Flutter 在 Mac 上的编译错误
解决 Flutter 在 Mac 上的编译错误 在使用 Flutter 进行项目开发并尝试在 Mac 设备上进行编译时,遇到了一系列的错误信息,这些错误信息给项目的构建与部署带来了阻碍。 一、错误详情 在编译过程中,Xcode 输出了大量的信息,其中…...

MR30分布式IO在新能源领域加氢站的应用
导读 氢能被誉为21世纪最具发展潜力的清洁能源,氢能科技创新和产业发展持续得到各国青睐。氢能低碳环保,燃烧的产物只有水,是用能终端实现绿色低碳转型的重要载体。氢能产业链分别为上游制氢、中游储运以及下游用氢。上游制氢工艺目前大部分…...

wxPython中wx.ListCtrl用法(二)
wx.ListCtrl是一个列表组件,可以以列表视图(list view)、报表视图(report view)、图标视图(icon view)和小图标视图(small icon view)等多种模式显示列表。 一、方法 __…...
kubernetes 资源汇总
kubernetes 资源汇总 官网 英文文档 官方英文文档 中文文档 官方中文文档 github github源码地址 培训认证 也就是linux基金会的认证,上面也提供培训课程 下载资源 官网下载资源,国内的话k8s镜像下载不了,要去镜像站 在线练习 killer…...
每日一题(对标gesp三级答案将在第二天公布)
编程题 题目描述: 小杨为数字4,5,6和7设计了一款表示形式,每个数字占用了66的网格。数字4,5,6和7的表示形式如下(此处自行设计复杂一些的表示形式示例): 数字4: …. …. …. …. *… 数字5: …...

让 Win10 上网本 Debug 模式 QUDPSocket 信号槽 收发不丢包的方法总结
在前两篇文章里,我们探讨了不少UDP丢包的解决方案。经过几年的摸索测试,其实方法非常简单, 无需修改代码。 1. Windows 下设置UDP缓存 这个方法可以一劳永逸解决UDP的收发丢包问题,只要添加注册表项目并重启即可。即使用Qt的信号与槽&#…...
Python爬虫之使用BeautifulSoup进行HTML Document文档的解析
BeautifulSoup 是一个用于解析 HTML 和 XML 文档的 Python 库,它为开发者提供了一种简单的方式来查找、遍历和修改文档树。BeautifulSoup 特别擅长处理不规则或格式不佳的标记语言,可以自动更正无效的 HTML,因此在网页抓取(Web Sc…...
vue.config.js配置参数说明新手教程
这篇文章主要是对vue.config.js配置文件的主要参数进行一下说明,方便使用时的查询, 下面进行介绍 1、vue.config.js vue.config.js 是一个可选的配置文件,如果项目的 (和 package.json 同级的) 根目录中存在这个文件,那么它会被…...
C# 关于加密技术以及应用(二)
AES(Advanced Encryption Standard)和 RSA(Rivest-Shamir-Adleman)是两种不同的加密算法,它们各自有特定的使用场景和优势。下面是它们的主要区别和适用场景: AES(高级加密标准) 特…...

视频中的某些片段如何制作GIF表情包?
动态表情包(GIF)已经成为我们日常沟通中不可或缺的一部分。GIF(Graphics Interchange Format),即图形交换格式,是一种支持多帧图像和透明度的位图文件格式。它最初由 CompuServe 公司在 1987 年推出&#x…...

图像识别 | Matlab基于卷积神经网络(CNN)的宝可梦识别源程序,GUI界面。附详细的运行说明。
图像识别 | Matlab基于卷积神经网络(CNN)的宝可梦识别源程序,GUI界面。附详细的运行说明。 目录 图像识别 | Matlab基于卷积神经网络(CNN)的宝可梦识别源程序,GUI界面。附详细的运行说明。预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab基…...

String【Redis对象篇】
🏆 作者简介:席万里 ⚡ 个人网站:https://dahua.bloggo.chat/ ✍️ 一名后端开发小趴菜,同时略懂Vue与React前端技术,也了解一点微信小程序开发。 🍻 对计算机充满兴趣,愿意并且希望学习更多的技…...

top命令和系统负载
1 top中的字段说明 top是一个实时系统监视工具,可以动态展现出 CPU 使用率、内存使用情况、进程状态等信息,注意这些显示的文本不能直接使用 > 追加到文件中。 [rootvv~]# top -bn 1 | head top - 20:08:28 up 138 days, 10:29, 4 users, load av…...

【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...

如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
【JavaSE】多线程基础学习笔记
多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
c# 局部函数 定义、功能与示例
C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...