《Keras3 minist 手写数字AI模型训练22秒精度达到:0.97》
《Keras3 minist 手写数字AI模型训练22秒精度达到:0.97》
- 一、修改源码加上如下两条代码
- 二、源码修改如下
- 三、Keras3 minist 训练22秒结束,训练过程截图
- 四、Keras3 minist 源码截图
一、修改源码加上如下两条代码
import os
os.environ["KERAS_BACKEND"] = "torch"
二、源码修改如下
import os
os.environ["KERAS_BACKEND"] = "torch"import numpy as np
import keras
from keras import layers
from keras.utils import to_categorical# Model / data parameters
num_classes = 10
input_shape = (28, 28, 1)# Load the data and split it between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()# Scale images to the [0, 1] range
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
# Make sure images have shape (28, 28, 1)
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
print("x_train shape:", x_train.shape)
print(x_train.shape[0], "train samples")
print(x_test.shape[0], "test samples")# convert class vectors to binary class matrices
y_train = to_categorical(y_train, num_classes)
y_test = to_categorical(y_test, num_classes)batch_size = 128
epochs = 3model = keras.Sequential([layers.Input(shape=input_shape),layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),layers.MaxPooling2D(pool_size=(2, 2)),layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),layers.MaxPooling2D(pool_size=(2, 2)),layers.Flatten(),layers.Dropout(0.5),layers.Dense(num_classes, activation="softmax"),]
)model.summary()model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]
)model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1
)score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
三、Keras3 minist 训练22秒结束,训练过程截图

四、Keras3 minist 源码截图

相关文章:
《Keras3 minist 手写数字AI模型训练22秒精度达到:0.97》
《Keras3 minist 手写数字AI模型训练22秒精度达到:0.97》 一、修改源码加上如下两条代码二、源码修改如下三、Keras3 minist 训练22秒结束,训练过程截图四、Keras3 minist 源码截图 一、修改源码加上如下两条代码 import os os.environ["KERAS_BAC…...
【.net core】【sqlsugar】大数据写入配置(需要版本5.0.45)
官网连接 https://www.donet5.com/home/Doc?typeId2404 泛型方法 /// <summary> /// 大数据写入(泛型方法) /// </summary> /// <param name"entitys"></param> /// <returns></returns> ///代码中_d…...
ansible运维实战
通过学习ansible自动化运维,初步对ansible有了一定的了解,此次分享两个案例,希望对大家有所帮助 案例一:自动化安装nginx 本次案例目的是ansible自动化安装nginx并配置 首先创建如图所示目录 在主机上安装好nginx,如…...
DDOS分布式拒绝服务攻击
DDOS分布式拒绝服务攻击 简单来说 传统的DOS就是一台或者多台服务对一个受害目标(服务器,路由,ip,国家)进行攻击,当范围过大时就是DDOS。目的就是通过大规模的网络流量使得正常流量不能访问受害目标&…...
如何使用 Python 实现 UDP 通信?
1. UDP通信基础 UDP(用户数据报协议)是一种无连接的传输层协议,它提供了一种不可靠的数据传输服务,但具有较低的延迟和较小的开销。在Python中,可以使用socket模块来实现UDP通信。 2. 实现UDP服务端 import socketd…...
MTK 配置文件梳理
文章目录 MTK 日常配置总结屏幕默认横竖屏显示ro.build.characteristics 属性修改修改点一:build\core\product_config.mk修改点二:build\make\core\main.mk修改是否成功,adb 验证 配置部分系统app handheld_product.mk配置系统属性、第三方应…...
论文笔记:Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See
2024 10月的arxiv 1 主要idea 针对多模态大模型(如LLaVA),提出了一系列高效的剪枝策略 在显著降低计算开销(多达 88%)的同时,保持了模型在多模态任务中的性能表现 2 目前的问题 与文本 token 相比&…...
软考高级架构 —— 10.6 大型网站系统架构演化实例 + 软件架构维护
10.6 大型网站系统架构演化实例 大型网站的技术挑战主要来自于庞大的用户,高并发的访问和海量的数据,主要解决这类问题。 1. 单体架构 特点: 所有资源(应用程序、数据库、文件)集中在一台服务器上。适用场景: 小型网站&am…...
2024美赛数学建模C题:网球比赛中的动量,用马尔可夫链求解!详细分析
文末获取历年美赛数学建模论文,交流思路模型 接下来讲解马尔可夫链在2024年C题中的运用 1. 马尔科夫链的基本原理 马尔科夫链是描述随机过程的一种数学模型,其核心特征是无记忆性。 简单来说,系统在某一时刻的状态只取决于当前状态&#x…...
23种设计模式之状态模式
目录 1. 简介2. 代码2.1 State (定义抽象状态接口)2.2 StartState (实现具体状态类)2.3 EndState (实现具体状态类)2.4 Context (定义上下文类)2.5 Test (测试类…...
Elasticsearch Serverless 中的数据流自动分片
作者:来自 Elastic Andrei Dan 在 Elastic Cloud Serverless 中,我们根据索引负载自动为数据流配置最佳分片数量,从而使用户无需摆弄分片。 传统上,用户会更改数据流的分片配置,以处理各种工作负载并充分利用可用资源。…...
YOLOv10改进,YOLOv10添加U-Netv2分割网络中SDI信息融合模块+GSConv卷积,助力小目标
理论介绍 完成本篇需要参考以下两篇文章,并已添加到YOLOv10代码中 YOLOv10改进,YOLOv10添加U-Netv2分割网络中SDI信息融合模块,助力小目标检测YOLOv10改进,YOLOv10添加GSConv卷积+Slim-neck,助力小目标检测,二次创新C2f结构下文都是手把手教程,跟着操作即可添加成功 目…...
xshell连接虚拟机,更换网络模式:NAT->桥接模式
NAT模式:虚拟机通过宿主机的网络访问外网。优点在于不需要手动配置IP地址和子网掩码,只要宿主机能够访问网络,虚拟机也能够访问。对外部网络而言,它看到的是宿主机的IP地址,而不是虚拟机的IP。但是,宿主机可…...
sql的where条件中使用case when
场景: 1、使用oracle数据库,数据类型为number,需要正无穷值。 2、数据表中有两个金额值,最大值和最小值, 如10~20, 30 ~40,40以上,数据库中这样设计 id name min max 1 j 10 20 2 …...
MacOS 上以源码形式安装 MySQL 5.7
以下是在 macOS 上从源码安装 MySQL 5.7 的步骤: 前置条件 安装 Homebrew:如果你还没有安装 Homebrew,可以在终端中运行以下命令进行安装: /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install…...
MySQL 事务隔离级别详解
一、事务的基本概念 (一)什么是事务 事务是一个逻辑工作单元,由一组数据库操作组成。这些操作要么全部成功执行,要么全部回滚,以确保数据库的一致性。事务具有以下四个特性,通常被称为 ACID 特性ÿ…...
C语言——高精度问题
1、高精度计算的本质:竖式计算; 2、适用解决超出long long int 范围的大整数计算 #include<stdio.h> #include<string.h> #define N 100 char str1[N4]{0},str2[N4]{0}; int arr1[N4]{0},arr2[N4]{0}; int ans[N5]{0};//将字符串转化成整型…...
aippt:AI 智能生成 PPT 的开源项目
aippt:AI 智能生成 PPT 的开源项目 在现代办公和学习中,PPT(PowerPoint Presentation)是一种非常重要的展示工具。然而,制作一份高质量的PPT往往需要花费大量的时间和精力。为了解决这一问题,aippt项目应运…...
【Qt之·类QSettings·参数保存】
系列文章目录 文章目录 前言一、概述1.1 QSetting是什么1.2 为什么学习QSetting是重要的 二、不同存储位置的优缺点三、 QSetting的高级用法四、实例演示总结 前言 在当今的应用程序开发中,设置管理是一个至关重要的方面。应用程序的设置包括用户偏好、配置选项和其…...
location重定向和nginx代理
文章目录 1 location重定向1.1 概述1.2 rewrite跳转1.3 用例1.4 实验1.4.1 基于域名的跳转1.4.2 基于ip的跳转1.4.3 基于后缀名的跳转 2 nginx的代理2.1 nginx内置变量2.2 正向代理2.2.1 固定正向代理2.2.2 自动代理 2.3 反向代理2.3.1 负载均衡的算法2.3.2 负载均衡的特点2.3.…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
