《Keras3 minist 手写数字AI模型训练22秒精度达到:0.97》
《Keras3 minist 手写数字AI模型训练22秒精度达到:0.97》
- 一、修改源码加上如下两条代码
- 二、源码修改如下
- 三、Keras3 minist 训练22秒结束,训练过程截图
- 四、Keras3 minist 源码截图
一、修改源码加上如下两条代码
import os
os.environ["KERAS_BACKEND"] = "torch"
二、源码修改如下
import os
os.environ["KERAS_BACKEND"] = "torch"import numpy as np
import keras
from keras import layers
from keras.utils import to_categorical# Model / data parameters
num_classes = 10
input_shape = (28, 28, 1)# Load the data and split it between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()# Scale images to the [0, 1] range
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
# Make sure images have shape (28, 28, 1)
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
print("x_train shape:", x_train.shape)
print(x_train.shape[0], "train samples")
print(x_test.shape[0], "test samples")# convert class vectors to binary class matrices
y_train = to_categorical(y_train, num_classes)
y_test = to_categorical(y_test, num_classes)batch_size = 128
epochs = 3model = keras.Sequential([layers.Input(shape=input_shape),layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),layers.MaxPooling2D(pool_size=(2, 2)),layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),layers.MaxPooling2D(pool_size=(2, 2)),layers.Flatten(),layers.Dropout(0.5),layers.Dense(num_classes, activation="softmax"),]
)model.summary()model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]
)model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1
)score = model.evaluate(x_test, y_test, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
三、Keras3 minist 训练22秒结束,训练过程截图
四、Keras3 minist 源码截图
相关文章:

《Keras3 minist 手写数字AI模型训练22秒精度达到:0.97》
《Keras3 minist 手写数字AI模型训练22秒精度达到:0.97》 一、修改源码加上如下两条代码二、源码修改如下三、Keras3 minist 训练22秒结束,训练过程截图四、Keras3 minist 源码截图 一、修改源码加上如下两条代码 import os os.environ["KERAS_BAC…...
【.net core】【sqlsugar】大数据写入配置(需要版本5.0.45)
官网连接 https://www.donet5.com/home/Doc?typeId2404 泛型方法 /// <summary> /// 大数据写入(泛型方法) /// </summary> /// <param name"entitys"></param> /// <returns></returns> ///代码中_d…...

ansible运维实战
通过学习ansible自动化运维,初步对ansible有了一定的了解,此次分享两个案例,希望对大家有所帮助 案例一:自动化安装nginx 本次案例目的是ansible自动化安装nginx并配置 首先创建如图所示目录 在主机上安装好nginx,如…...
DDOS分布式拒绝服务攻击
DDOS分布式拒绝服务攻击 简单来说 传统的DOS就是一台或者多台服务对一个受害目标(服务器,路由,ip,国家)进行攻击,当范围过大时就是DDOS。目的就是通过大规模的网络流量使得正常流量不能访问受害目标&…...
如何使用 Python 实现 UDP 通信?
1. UDP通信基础 UDP(用户数据报协议)是一种无连接的传输层协议,它提供了一种不可靠的数据传输服务,但具有较低的延迟和较小的开销。在Python中,可以使用socket模块来实现UDP通信。 2. 实现UDP服务端 import socketd…...

MTK 配置文件梳理
文章目录 MTK 日常配置总结屏幕默认横竖屏显示ro.build.characteristics 属性修改修改点一:build\core\product_config.mk修改点二:build\make\core\main.mk修改是否成功,adb 验证 配置部分系统app handheld_product.mk配置系统属性、第三方应…...

论文笔记:Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See
2024 10月的arxiv 1 主要idea 针对多模态大模型(如LLaVA),提出了一系列高效的剪枝策略 在显著降低计算开销(多达 88%)的同时,保持了模型在多模态任务中的性能表现 2 目前的问题 与文本 token 相比&…...

软考高级架构 —— 10.6 大型网站系统架构演化实例 + 软件架构维护
10.6 大型网站系统架构演化实例 大型网站的技术挑战主要来自于庞大的用户,高并发的访问和海量的数据,主要解决这类问题。 1. 单体架构 特点: 所有资源(应用程序、数据库、文件)集中在一台服务器上。适用场景: 小型网站&am…...

2024美赛数学建模C题:网球比赛中的动量,用马尔可夫链求解!详细分析
文末获取历年美赛数学建模论文,交流思路模型 接下来讲解马尔可夫链在2024年C题中的运用 1. 马尔科夫链的基本原理 马尔科夫链是描述随机过程的一种数学模型,其核心特征是无记忆性。 简单来说,系统在某一时刻的状态只取决于当前状态&#x…...
23种设计模式之状态模式
目录 1. 简介2. 代码2.1 State (定义抽象状态接口)2.2 StartState (实现具体状态类)2.3 EndState (实现具体状态类)2.4 Context (定义上下文类)2.5 Test (测试类…...

Elasticsearch Serverless 中的数据流自动分片
作者:来自 Elastic Andrei Dan 在 Elastic Cloud Serverless 中,我们根据索引负载自动为数据流配置最佳分片数量,从而使用户无需摆弄分片。 传统上,用户会更改数据流的分片配置,以处理各种工作负载并充分利用可用资源。…...

YOLOv10改进,YOLOv10添加U-Netv2分割网络中SDI信息融合模块+GSConv卷积,助力小目标
理论介绍 完成本篇需要参考以下两篇文章,并已添加到YOLOv10代码中 YOLOv10改进,YOLOv10添加U-Netv2分割网络中SDI信息融合模块,助力小目标检测YOLOv10改进,YOLOv10添加GSConv卷积+Slim-neck,助力小目标检测,二次创新C2f结构下文都是手把手教程,跟着操作即可添加成功 目…...

xshell连接虚拟机,更换网络模式:NAT->桥接模式
NAT模式:虚拟机通过宿主机的网络访问外网。优点在于不需要手动配置IP地址和子网掩码,只要宿主机能够访问网络,虚拟机也能够访问。对外部网络而言,它看到的是宿主机的IP地址,而不是虚拟机的IP。但是,宿主机可…...
sql的where条件中使用case when
场景: 1、使用oracle数据库,数据类型为number,需要正无穷值。 2、数据表中有两个金额值,最大值和最小值, 如10~20, 30 ~40,40以上,数据库中这样设计 id name min max 1 j 10 20 2 …...
MacOS 上以源码形式安装 MySQL 5.7
以下是在 macOS 上从源码安装 MySQL 5.7 的步骤: 前置条件 安装 Homebrew:如果你还没有安装 Homebrew,可以在终端中运行以下命令进行安装: /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install…...
MySQL 事务隔离级别详解
一、事务的基本概念 (一)什么是事务 事务是一个逻辑工作单元,由一组数据库操作组成。这些操作要么全部成功执行,要么全部回滚,以确保数据库的一致性。事务具有以下四个特性,通常被称为 ACID 特性ÿ…...

C语言——高精度问题
1、高精度计算的本质:竖式计算; 2、适用解决超出long long int 范围的大整数计算 #include<stdio.h> #include<string.h> #define N 100 char str1[N4]{0},str2[N4]{0}; int arr1[N4]{0},arr2[N4]{0}; int ans[N5]{0};//将字符串转化成整型…...

aippt:AI 智能生成 PPT 的开源项目
aippt:AI 智能生成 PPT 的开源项目 在现代办公和学习中,PPT(PowerPoint Presentation)是一种非常重要的展示工具。然而,制作一份高质量的PPT往往需要花费大量的时间和精力。为了解决这一问题,aippt项目应运…...

【Qt之·类QSettings·参数保存】
系列文章目录 文章目录 前言一、概述1.1 QSetting是什么1.2 为什么学习QSetting是重要的 二、不同存储位置的优缺点三、 QSetting的高级用法四、实例演示总结 前言 在当今的应用程序开发中,设置管理是一个至关重要的方面。应用程序的设置包括用户偏好、配置选项和其…...

location重定向和nginx代理
文章目录 1 location重定向1.1 概述1.2 rewrite跳转1.3 用例1.4 实验1.4.1 基于域名的跳转1.4.2 基于ip的跳转1.4.3 基于后缀名的跳转 2 nginx的代理2.1 nginx内置变量2.2 正向代理2.2.1 固定正向代理2.2.2 自动代理 2.3 反向代理2.3.1 负载均衡的算法2.3.2 负载均衡的特点2.3.…...

Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
k8s从入门到放弃之HPA控制器
k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率(或其他自定义指标)来调整这些对象的规模,从而帮助应用程序在负…...
多元隐函数 偏导公式
我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式,给定一个隐函数关系: F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 🧠 目标: 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z、 …...
《Offer来了:Java面试核心知识点精讲》大纲
文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...

pgsql:还原数据库后出现重复序列导致“more than one owned sequence found“报错问题的解决
问题: pgsql数据库通过备份数据库文件进行还原时,如果表中有自增序列,还原后可能会出现重复的序列,此时若向表中插入新行时会出现“more than one owned sequence found”的报错提示。 点击菜单“其它”-》“序列”,…...
CppCon 2015 学习:Reactive Stream Processing in Industrial IoT using DDS and Rx
“Reactive Stream Processing in Industrial IoT using DDS and Rx” 是指在工业物联网(IIoT)场景中,结合 DDS(Data Distribution Service) 和 Rx(Reactive Extensions) 技术,实现 …...
linux设备重启后时间与网络时间不同步怎么解决?
linux设备重启后时间与网络时间不同步怎么解决? 设备只要一重启,时间又错了/偏了,明明刚刚对时还是对的! 这在物联网、嵌入式开发环境特别常见,尤其是开发板、树莓派、rk3588 这类设备。 解决方法: 加硬件…...