HNU_多传感器(专选)_作业4(构建单层感知器实现分类)
1. (论述题)(共1题,100分)
假设平面坐标系上有四个点,要求构建单层感知器实现分类。
(3,3),(4,3) 两个点的标签为1;
(1,1),(0,2) 两个点的标签为-1。
思路:要分类的数据是2维数据,需要2个输入节点,把神经元的偏置值也设置成一个节点(偏置也是一个输入,恒等于1),总共有3个输入节点。
输入数据有4组:
(1,3,3),(1,4,3),(1,1,1),(1,0,2)
对应的标签为(1,1,-1,-1)
初始化权值w0,w1,w2取-1到1的随机数;
学习率设为0.11;
激活函数为sign函数。
我的答案:
1. 初始化:
- (1)输入数据:X=[[1,3,3],[1,4,3],[1,1,1],[1,0,2]];
- (2)标签:Y=[1,1,-1,-1]
- (3)权值向量:W=[w0,w1,w2],随机在[-1,1]中;
- (4)学习率:η= 0.11
2.激活函数:
- sign(x) = 1 if x > 0 else -1
3.训练过程
- (1)前向传播:神经元输出:
![]()
- (2)计算误差:
![]()
- (3)更新权值:
![]()
- (4)若未达到“所有样本均正确分类/达到最大迭代次数”,则重复(1)~(3)
4.迭代过程:
可通过程序代码,进行迭代:(其中一次迭代如下):
初始权值: [ 0.58717924 -0.64675996 0.79238846]
=== 第 1 轮迭代 ===
样本: [1 1 1], 标签: -1, 预测: 1
权值更新量(eta * (Y[i] - y_pred) * X[i]): [-0.22 -0.22 -0.22]
更新后的权值: [ 0.36717924 -0.86675996 0.57238846]
样本: [1 0 2], 标签: -1, 预测: 1
权值更新量(eta * (Y[i] - y_pred) * X[i]): [-0.22 -0. -0.44]
更新后的权值: [ 0.14717924 -0.86675996 0.13238846]
=== 第 2 轮迭代 ===
样本: [1 3 3], 标签: 1, 预测: -1
权值更新量(eta * (Y[i] - y_pred) * X[i]): [0.22 0.66 0.66]
更新后的权值: [ 0.36717924 -0.20675996 0.79238846]
样本: [1 1 1], 标签: -1, 预测: 1
权值更新量(eta * (Y[i] - y_pred) * X[i]): [-0.22 -0.22 -0.22]
更新后的权值: [ 0.14717924 -0.42675996 0.57238846]
样本: [1 0 2], 标签: -1, 预测: 1
权值更新量(eta * (Y[i] - y_pred) * X[i]): [-0.22 -0. -0.44]
更新后的权值: [-0.07282076 -0.42675996 0.13238846]
=== 第 3 轮迭代 ===
样本: [1 3 3], 标签: 1, 预测: -1
权值更新量(eta * (Y[i] - y_pred) * X[i]): [0.22 0.66 0.66]
更新后的权值: [0.14717924 0.23324004 0.79238846]
样本: [1 1 1], 标签: -1, 预测: 1
权值更新量(eta * (Y[i] - y_pred) * X[i]): [-0.22 -0.22 -0.22]
更新后的权值: [-0.07282076 0.01324004 0.57238846]
样本: [1 0 2], 标签: -1, 预测: 1
权值更新量(eta * (Y[i] - y_pred) * X[i]): [-0.22 -0. -0.44]
更新后的权值: [-0.29282076 0.01324004 0.13238846]
=== 第 4 轮迭代 ===
训练在第 4 轮收敛
训练后的权值: [-0.29282076 0.01324004 0.13238846]
import numpy as np# 数据
X = np.array([[1, 3, 3],[1, 4, 3],[1, 1, 1],[1, 0, 2]
])
Y = np.array([1, 1, -1, -1])# 初始化权值和参数
W = np.random.uniform(-1, 1, 3) # 权值初始化
eta = 0.11 # 学习率
max_epochs = 100 # 最大迭代次数# 激活函数
def sign(x):return 1 if x > 0 else -1# 训练
print("初始权值:", W)
for epoch in range(max_epochs):print(f"\n=== 第 {epoch + 1} 轮迭代 ===")errors = 0for i in range(len(X)):# 前向传播y_pred = sign(np.dot(X[i], W))# 检查预测是否正确if y_pred != Y[i]:errors += 1delta_W = eta * (Y[i] - y_pred) * X[i] # 计算权值更新量W += delta_W # 更新权值# 打印更新信息print(f"样本: {X[i]}, 标签: {Y[i]}, 预测: {y_pred}")print(f"权值更新量(eta * (Y[i] - y_pred) * X[i]): {delta_W}")print(f"更新后的权值: {W}")if errors == 0: # 如果没有错误分类print(f"训练在第 {epoch + 1} 轮收敛")break
else:print("未在最大迭代次数内收敛")print("\n训练后的权值:", W)
相关文章:
HNU_多传感器(专选)_作业4(构建单层感知器实现分类)
1. (论述题)(共1题,100分) 假设平面坐标系上有四个点,要求构建单层感知器实现分类。 (3,3),(4,3) 两个点的标签为1; (1,1),(0,2) 两个点的标签为-1。 思路:要分类的数据是2维数据,需要2个输入…...
以太网链路详情
文章目录 1、交换机1、常见的概念1、冲突域2、广播域3、以太网卡1、以太网卡帧 4、mac地址1、mac地址表示2、mac地址分类3、mac地址转换为二进制 2、交换机的工作原理1、mac地址表2、交换机三种数据帧处理行为3、为什么会泛洪4、转发5、丢弃 3、mac表怎么获得4、同网段数据通信…...
vue3 setup语法,子组件点击一个元素打印了这个元素的下标id,怎么传递给父组件,让父组件去使用
问: vue3 setup语法,子组件点击一个元素打印了这个元素的下标id,怎么传递给父组件,让父组件去使用 回答: 在 Vue 3 中,你可以使用 setup 语法糖和组合式 API 来实现子组件向父组件传递数据。具体来说&am…...
《Keras3 minist 手写数字AI模型训练22秒精度达到:0.97》
《Keras3 minist 手写数字AI模型训练22秒精度达到:0.97》 一、修改源码加上如下两条代码二、源码修改如下三、Keras3 minist 训练22秒结束,训练过程截图四、Keras3 minist 源码截图 一、修改源码加上如下两条代码 import os os.environ["KERAS_BAC…...
【.net core】【sqlsugar】大数据写入配置(需要版本5.0.45)
官网连接 https://www.donet5.com/home/Doc?typeId2404 泛型方法 /// <summary> /// 大数据写入(泛型方法) /// </summary> /// <param name"entitys"></param> /// <returns></returns> ///代码中_d…...
ansible运维实战
通过学习ansible自动化运维,初步对ansible有了一定的了解,此次分享两个案例,希望对大家有所帮助 案例一:自动化安装nginx 本次案例目的是ansible自动化安装nginx并配置 首先创建如图所示目录 在主机上安装好nginx,如…...
DDOS分布式拒绝服务攻击
DDOS分布式拒绝服务攻击 简单来说 传统的DOS就是一台或者多台服务对一个受害目标(服务器,路由,ip,国家)进行攻击,当范围过大时就是DDOS。目的就是通过大规模的网络流量使得正常流量不能访问受害目标&…...
如何使用 Python 实现 UDP 通信?
1. UDP通信基础 UDP(用户数据报协议)是一种无连接的传输层协议,它提供了一种不可靠的数据传输服务,但具有较低的延迟和较小的开销。在Python中,可以使用socket模块来实现UDP通信。 2. 实现UDP服务端 import socketd…...
MTK 配置文件梳理
文章目录 MTK 日常配置总结屏幕默认横竖屏显示ro.build.characteristics 属性修改修改点一:build\core\product_config.mk修改点二:build\make\core\main.mk修改是否成功,adb 验证 配置部分系统app handheld_product.mk配置系统属性、第三方应…...
论文笔记:Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See
2024 10月的arxiv 1 主要idea 针对多模态大模型(如LLaVA),提出了一系列高效的剪枝策略 在显著降低计算开销(多达 88%)的同时,保持了模型在多模态任务中的性能表现 2 目前的问题 与文本 token 相比&…...
软考高级架构 —— 10.6 大型网站系统架构演化实例 + 软件架构维护
10.6 大型网站系统架构演化实例 大型网站的技术挑战主要来自于庞大的用户,高并发的访问和海量的数据,主要解决这类问题。 1. 单体架构 特点: 所有资源(应用程序、数据库、文件)集中在一台服务器上。适用场景: 小型网站&am…...
2024美赛数学建模C题:网球比赛中的动量,用马尔可夫链求解!详细分析
文末获取历年美赛数学建模论文,交流思路模型 接下来讲解马尔可夫链在2024年C题中的运用 1. 马尔科夫链的基本原理 马尔科夫链是描述随机过程的一种数学模型,其核心特征是无记忆性。 简单来说,系统在某一时刻的状态只取决于当前状态&#x…...
23种设计模式之状态模式
目录 1. 简介2. 代码2.1 State (定义抽象状态接口)2.2 StartState (实现具体状态类)2.3 EndState (实现具体状态类)2.4 Context (定义上下文类)2.5 Test (测试类…...
Elasticsearch Serverless 中的数据流自动分片
作者:来自 Elastic Andrei Dan 在 Elastic Cloud Serverless 中,我们根据索引负载自动为数据流配置最佳分片数量,从而使用户无需摆弄分片。 传统上,用户会更改数据流的分片配置,以处理各种工作负载并充分利用可用资源。…...
YOLOv10改进,YOLOv10添加U-Netv2分割网络中SDI信息融合模块+GSConv卷积,助力小目标
理论介绍 完成本篇需要参考以下两篇文章,并已添加到YOLOv10代码中 YOLOv10改进,YOLOv10添加U-Netv2分割网络中SDI信息融合模块,助力小目标检测YOLOv10改进,YOLOv10添加GSConv卷积+Slim-neck,助力小目标检测,二次创新C2f结构下文都是手把手教程,跟着操作即可添加成功 目…...
xshell连接虚拟机,更换网络模式:NAT->桥接模式
NAT模式:虚拟机通过宿主机的网络访问外网。优点在于不需要手动配置IP地址和子网掩码,只要宿主机能够访问网络,虚拟机也能够访问。对外部网络而言,它看到的是宿主机的IP地址,而不是虚拟机的IP。但是,宿主机可…...
sql的where条件中使用case when
场景: 1、使用oracle数据库,数据类型为number,需要正无穷值。 2、数据表中有两个金额值,最大值和最小值, 如10~20, 30 ~40,40以上,数据库中这样设计 id name min max 1 j 10 20 2 …...
MacOS 上以源码形式安装 MySQL 5.7
以下是在 macOS 上从源码安装 MySQL 5.7 的步骤: 前置条件 安装 Homebrew:如果你还没有安装 Homebrew,可以在终端中运行以下命令进行安装: /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install…...
MySQL 事务隔离级别详解
一、事务的基本概念 (一)什么是事务 事务是一个逻辑工作单元,由一组数据库操作组成。这些操作要么全部成功执行,要么全部回滚,以确保数据库的一致性。事务具有以下四个特性,通常被称为 ACID 特性ÿ…...
C语言——高精度问题
1、高精度计算的本质:竖式计算; 2、适用解决超出long long int 范围的大整数计算 #include<stdio.h> #include<string.h> #define N 100 char str1[N4]{0},str2[N4]{0}; int arr1[N4]{0},arr2[N4]{0}; int ans[N5]{0};//将字符串转化成整型…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...
tauri项目,如何在rust端读取电脑环境变量
如果想在前端通过调用来获取环境变量的值,可以通过标准的依赖: std::env::var(name).ok() 想在前端通过调用来获取,可以写一个command函数: #[tauri::command] pub fn get_env_var(name: String) -> Result<String, Stri…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...

