HNU_多传感器(专选)_作业4(构建单层感知器实现分类)
1. (论述题)(共1题,100分)
假设平面坐标系上有四个点,要求构建单层感知器实现分类。
(3,3),(4,3) 两个点的标签为1;
(1,1),(0,2) 两个点的标签为-1。
思路:要分类的数据是2维数据,需要2个输入节点,把神经元的偏置值也设置成一个节点(偏置也是一个输入,恒等于1),总共有3个输入节点。
输入数据有4组:
(1,3,3),(1,4,3),(1,1,1),(1,0,2)
对应的标签为(1,1,-1,-1)
初始化权值w0,w1,w2取-1到1的随机数;
学习率设为0.11;
激活函数为sign函数。
我的答案:
1. 初始化:
- (1)输入数据:X=[[1,3,3],[1,4,3],[1,1,1],[1,0,2]];
- (2)标签:Y=[1,1,-1,-1]
- (3)权值向量:W=[w0,w1,w2],随机在[-1,1]中;
- (4)学习率:η= 0.11
2.激活函数:
- sign(x) = 1 if x > 0 else -1
3.训练过程
- (1)前向传播:神经元输出:
![]()
- (2)计算误差:
![]()
- (3)更新权值:
![]()
- (4)若未达到“所有样本均正确分类/达到最大迭代次数”,则重复(1)~(3)
4.迭代过程:
可通过程序代码,进行迭代:(其中一次迭代如下):
初始权值: [ 0.58717924 -0.64675996 0.79238846]
=== 第 1 轮迭代 ===
样本: [1 1 1], 标签: -1, 预测: 1
权值更新量(eta * (Y[i] - y_pred) * X[i]): [-0.22 -0.22 -0.22]
更新后的权值: [ 0.36717924 -0.86675996 0.57238846]
样本: [1 0 2], 标签: -1, 预测: 1
权值更新量(eta * (Y[i] - y_pred) * X[i]): [-0.22 -0. -0.44]
更新后的权值: [ 0.14717924 -0.86675996 0.13238846]
=== 第 2 轮迭代 ===
样本: [1 3 3], 标签: 1, 预测: -1
权值更新量(eta * (Y[i] - y_pred) * X[i]): [0.22 0.66 0.66]
更新后的权值: [ 0.36717924 -0.20675996 0.79238846]
样本: [1 1 1], 标签: -1, 预测: 1
权值更新量(eta * (Y[i] - y_pred) * X[i]): [-0.22 -0.22 -0.22]
更新后的权值: [ 0.14717924 -0.42675996 0.57238846]
样本: [1 0 2], 标签: -1, 预测: 1
权值更新量(eta * (Y[i] - y_pred) * X[i]): [-0.22 -0. -0.44]
更新后的权值: [-0.07282076 -0.42675996 0.13238846]
=== 第 3 轮迭代 ===
样本: [1 3 3], 标签: 1, 预测: -1
权值更新量(eta * (Y[i] - y_pred) * X[i]): [0.22 0.66 0.66]
更新后的权值: [0.14717924 0.23324004 0.79238846]
样本: [1 1 1], 标签: -1, 预测: 1
权值更新量(eta * (Y[i] - y_pred) * X[i]): [-0.22 -0.22 -0.22]
更新后的权值: [-0.07282076 0.01324004 0.57238846]
样本: [1 0 2], 标签: -1, 预测: 1
权值更新量(eta * (Y[i] - y_pred) * X[i]): [-0.22 -0. -0.44]
更新后的权值: [-0.29282076 0.01324004 0.13238846]
=== 第 4 轮迭代 ===
训练在第 4 轮收敛
训练后的权值: [-0.29282076 0.01324004 0.13238846]
import numpy as np# 数据
X = np.array([[1, 3, 3],[1, 4, 3],[1, 1, 1],[1, 0, 2]
])
Y = np.array([1, 1, -1, -1])# 初始化权值和参数
W = np.random.uniform(-1, 1, 3) # 权值初始化
eta = 0.11 # 学习率
max_epochs = 100 # 最大迭代次数# 激活函数
def sign(x):return 1 if x > 0 else -1# 训练
print("初始权值:", W)
for epoch in range(max_epochs):print(f"\n=== 第 {epoch + 1} 轮迭代 ===")errors = 0for i in range(len(X)):# 前向传播y_pred = sign(np.dot(X[i], W))# 检查预测是否正确if y_pred != Y[i]:errors += 1delta_W = eta * (Y[i] - y_pred) * X[i] # 计算权值更新量W += delta_W # 更新权值# 打印更新信息print(f"样本: {X[i]}, 标签: {Y[i]}, 预测: {y_pred}")print(f"权值更新量(eta * (Y[i] - y_pred) * X[i]): {delta_W}")print(f"更新后的权值: {W}")if errors == 0: # 如果没有错误分类print(f"训练在第 {epoch + 1} 轮收敛")break
else:print("未在最大迭代次数内收敛")print("\n训练后的权值:", W)
相关文章:
HNU_多传感器(专选)_作业4(构建单层感知器实现分类)
1. (论述题)(共1题,100分) 假设平面坐标系上有四个点,要求构建单层感知器实现分类。 (3,3),(4,3) 两个点的标签为1; (1,1),(0,2) 两个点的标签为-1。 思路:要分类的数据是2维数据,需要2个输入…...
以太网链路详情
文章目录 1、交换机1、常见的概念1、冲突域2、广播域3、以太网卡1、以太网卡帧 4、mac地址1、mac地址表示2、mac地址分类3、mac地址转换为二进制 2、交换机的工作原理1、mac地址表2、交换机三种数据帧处理行为3、为什么会泛洪4、转发5、丢弃 3、mac表怎么获得4、同网段数据通信…...
vue3 setup语法,子组件点击一个元素打印了这个元素的下标id,怎么传递给父组件,让父组件去使用
问: vue3 setup语法,子组件点击一个元素打印了这个元素的下标id,怎么传递给父组件,让父组件去使用 回答: 在 Vue 3 中,你可以使用 setup 语法糖和组合式 API 来实现子组件向父组件传递数据。具体来说&am…...
《Keras3 minist 手写数字AI模型训练22秒精度达到:0.97》
《Keras3 minist 手写数字AI模型训练22秒精度达到:0.97》 一、修改源码加上如下两条代码二、源码修改如下三、Keras3 minist 训练22秒结束,训练过程截图四、Keras3 minist 源码截图 一、修改源码加上如下两条代码 import os os.environ["KERAS_BAC…...
【.net core】【sqlsugar】大数据写入配置(需要版本5.0.45)
官网连接 https://www.donet5.com/home/Doc?typeId2404 泛型方法 /// <summary> /// 大数据写入(泛型方法) /// </summary> /// <param name"entitys"></param> /// <returns></returns> ///代码中_d…...
ansible运维实战
通过学习ansible自动化运维,初步对ansible有了一定的了解,此次分享两个案例,希望对大家有所帮助 案例一:自动化安装nginx 本次案例目的是ansible自动化安装nginx并配置 首先创建如图所示目录 在主机上安装好nginx,如…...
DDOS分布式拒绝服务攻击
DDOS分布式拒绝服务攻击 简单来说 传统的DOS就是一台或者多台服务对一个受害目标(服务器,路由,ip,国家)进行攻击,当范围过大时就是DDOS。目的就是通过大规模的网络流量使得正常流量不能访问受害目标&…...
如何使用 Python 实现 UDP 通信?
1. UDP通信基础 UDP(用户数据报协议)是一种无连接的传输层协议,它提供了一种不可靠的数据传输服务,但具有较低的延迟和较小的开销。在Python中,可以使用socket模块来实现UDP通信。 2. 实现UDP服务端 import socketd…...
MTK 配置文件梳理
文章目录 MTK 日常配置总结屏幕默认横竖屏显示ro.build.characteristics 属性修改修改点一:build\core\product_config.mk修改点二:build\make\core\main.mk修改是否成功,adb 验证 配置部分系统app handheld_product.mk配置系统属性、第三方应…...
论文笔记:Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See
2024 10月的arxiv 1 主要idea 针对多模态大模型(如LLaVA),提出了一系列高效的剪枝策略 在显著降低计算开销(多达 88%)的同时,保持了模型在多模态任务中的性能表现 2 目前的问题 与文本 token 相比&…...
软考高级架构 —— 10.6 大型网站系统架构演化实例 + 软件架构维护
10.6 大型网站系统架构演化实例 大型网站的技术挑战主要来自于庞大的用户,高并发的访问和海量的数据,主要解决这类问题。 1. 单体架构 特点: 所有资源(应用程序、数据库、文件)集中在一台服务器上。适用场景: 小型网站&am…...
2024美赛数学建模C题:网球比赛中的动量,用马尔可夫链求解!详细分析
文末获取历年美赛数学建模论文,交流思路模型 接下来讲解马尔可夫链在2024年C题中的运用 1. 马尔科夫链的基本原理 马尔科夫链是描述随机过程的一种数学模型,其核心特征是无记忆性。 简单来说,系统在某一时刻的状态只取决于当前状态&#x…...
23种设计模式之状态模式
目录 1. 简介2. 代码2.1 State (定义抽象状态接口)2.2 StartState (实现具体状态类)2.3 EndState (实现具体状态类)2.4 Context (定义上下文类)2.5 Test (测试类…...
Elasticsearch Serverless 中的数据流自动分片
作者:来自 Elastic Andrei Dan 在 Elastic Cloud Serverless 中,我们根据索引负载自动为数据流配置最佳分片数量,从而使用户无需摆弄分片。 传统上,用户会更改数据流的分片配置,以处理各种工作负载并充分利用可用资源。…...
YOLOv10改进,YOLOv10添加U-Netv2分割网络中SDI信息融合模块+GSConv卷积,助力小目标
理论介绍 完成本篇需要参考以下两篇文章,并已添加到YOLOv10代码中 YOLOv10改进,YOLOv10添加U-Netv2分割网络中SDI信息融合模块,助力小目标检测YOLOv10改进,YOLOv10添加GSConv卷积+Slim-neck,助力小目标检测,二次创新C2f结构下文都是手把手教程,跟着操作即可添加成功 目…...
xshell连接虚拟机,更换网络模式:NAT->桥接模式
NAT模式:虚拟机通过宿主机的网络访问外网。优点在于不需要手动配置IP地址和子网掩码,只要宿主机能够访问网络,虚拟机也能够访问。对外部网络而言,它看到的是宿主机的IP地址,而不是虚拟机的IP。但是,宿主机可…...
sql的where条件中使用case when
场景: 1、使用oracle数据库,数据类型为number,需要正无穷值。 2、数据表中有两个金额值,最大值和最小值, 如10~20, 30 ~40,40以上,数据库中这样设计 id name min max 1 j 10 20 2 …...
MacOS 上以源码形式安装 MySQL 5.7
以下是在 macOS 上从源码安装 MySQL 5.7 的步骤: 前置条件 安装 Homebrew:如果你还没有安装 Homebrew,可以在终端中运行以下命令进行安装: /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install…...
MySQL 事务隔离级别详解
一、事务的基本概念 (一)什么是事务 事务是一个逻辑工作单元,由一组数据库操作组成。这些操作要么全部成功执行,要么全部回滚,以确保数据库的一致性。事务具有以下四个特性,通常被称为 ACID 特性ÿ…...
C语言——高精度问题
1、高精度计算的本质:竖式计算; 2、适用解决超出long long int 范围的大整数计算 #include<stdio.h> #include<string.h> #define N 100 char str1[N4]{0},str2[N4]{0}; int arr1[N4]{0},arr2[N4]{0}; int ans[N5]{0};//将字符串转化成整型…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...
Ubuntu系统复制(U盘-电脑硬盘)
所需环境 电脑自带硬盘:1块 (1T) U盘1:Ubuntu系统引导盘(用于“U盘2”复制到“电脑自带硬盘”) U盘2:Ubuntu系统盘(1T,用于被复制) !!!建议“电脑…...

