PyTorch基本使用-张量的索引操作
在操作张量时,经常要去获取某些元素进行处理或者修改操作,在这里需要了解torch中的索引操作。
准备数据:
data = torch.randint(0,10,[4,5])
print('data--->',data)
输出结果:
data---> tensor([[3, 9, 4, 0, 5],[7, 5, 9, 9, 7],[5, 9, 8, 9, 7],[9, 2, 6, 7, 7]])
-
简单行、列索引
print('第一行:',data[0]) print('第一列:',data[:,0])输出结果:
第一行: tensor([3, 9, 4, 0, 5]) 第一列: tensor([3, 7, 5, 9]) -
列表索引
print('-----------------返回(0,1)、(1,2) 2个位置的元素------------------') print(data[[0,1],[1,2]]) print('-----------------返回0、1 行的1、2 列共4个元素------------------') print(data[[[0],[1]],[1,2]])输出结果:
-----------------返回(0,1)、(1,2) 2个位置的元素------------------ tensor([9, 9]) -----------------返回0、1 行的1、2 列共4个元素------------------ tensor([[9, 4],[5, 9]]) -
范围索引
print('-----------------前3行、前2列的数据------------------') print(data[:3,:2]) print('-----------------第2行到最后的前2列数据------------------') print(data[2:,:2])输出结果:
-----------------前3行、前2列的数据------------------ tensor([[3, 9],[7, 5],[5, 9]]) -----------------第2行到最后的前2列数据------------------ tensor([[5, 9],[9, 2]]) -
布尔索引
print('-----------------第三列大于5的行数据------------------') print(data[data[:,2] > 5]) print('-----------------第二行大于5的行数据------------------') print(data[:,data[1] > 5])输出结果:
-----------------第三列大于5的行数据------------------ tensor([[7, 5, 9, 9, 7],[5, 9, 8, 9, 7],[9, 2, 6, 7, 7]]) -----------------第二行大于5的行数据------------------ tensor([[3, 4, 0, 5],[7, 9, 9, 7],[5, 8, 9, 7],[9, 6, 7, 7]]) -
多维索引
data = torch.randint(0,10,[3,4,5]) print(data) # 获取0轴上的第一个数据 print(data[0,:,:]) # 获取1轴上的第一个数据 print(data[:,0,:]) # 获取2轴上的第一个数据 print(data[:,:,0])输出结果:
tensor([[[8, 3, 6, 1, 5],[5, 0, 4, 3, 8],[8, 3, 3, 5, 0],[6, 4, 0, 8, 4]],[[7, 2, 3, 8, 5],[6, 2, 9, 5, 0],[4, 2, 7, 1, 1],[5, 4, 4, 1, 1]],[[2, 4, 7, 2, 5],[6, 1, 4, 5, 6],[9, 2, 3, 1, 0],[2, 1, 2, 7, 9]]]) tensor([[8, 3, 6, 1, 5],[5, 0, 4, 3, 8],[8, 3, 3, 5, 0],[6, 4, 0, 8, 4]]) tensor([[8, 3, 6, 1, 5],[7, 2, 3, 8, 5],[2, 4, 7, 2, 5]]) tensor([[8, 5, 8, 6],[7, 6, 4, 5],[2, 6, 9, 2]])
相关文章:
PyTorch基本使用-张量的索引操作
在操作张量时,经常要去获取某些元素进行处理或者修改操作,在这里需要了解torch中的索引操作。 准备数据: data torch.randint(0,10,[4,5]) print(data--->,data)输出结果: data---> tensor([[3, 9, 4, 0, 5],[7, 5, 9, …...
OpenCV实验:图片加水印
第二篇:图片添加水印(加 logo) 1. 实验原理 水印原理: 图片添加水印是图像叠加的一种应用,分为透明水印和不透明水印。水印的实现通常依赖于像素值操作,将水印图片融合到目标图片中,常用的方法…...
sql server log文件
确定 SQL Server 实例中具有大量 VDF 的数据库 SELECT [name], COUNT(l.database_id) AS vlf_count FROM sys.databases AS s CROSS APPLY sys.dm_db_log_info(s.database_id) AS l GROUP BY [name] HAVING COUNT(l.database_id) > 100; 在收缩日志文件之前确定事务日志中…...
Elasticsearch 集群部署
Elasticsearch 是一个分布式的搜索和分析引擎,广泛应用于日志分析、全文搜索、实时数据分析等场景。它以其高性能、高可用性和易用性而著称。本文档将引导您完成一个基本的 Elasticsearch 集群配置,包括节点间的通信、客户端访问、安全设置等关键步骤。我…...
微信小程序5-图片实现点击动作和动态加载同类数据
搜索 微信小程序 “动物觅踪” 观看效果 感谢阅读,初学小白,有错指正。 一、功能描述 a. 原本想通过按钮加载背景图片,来实现一个可以点击的搜索button,但是遇到两个难点,一是按钮大小调整不方便(网上搜索…...
策略梯度定理公式的详细推导
策略梯度定理公式的详细推导 以下是策略梯度定理公式从基础概率公式到最终形式的完整推导,帮助更清晰地理解推导过程中的每一个步骤。 1. 策略梯度的目标 我们希望最大化期望累积奖励 ( J ( θ ) J(\theta) J(θ) ),其定义为: J ( θ ) E…...
力扣-图论-10【算法学习day.60】
前言 ###我做这类文章一个重要的目的还是给正在学习的大家提供方向和记录学习过程(例如想要掌握基础用法,该刷哪些题?)我的解析也不会做的非常详细,只会提供思路和一些关键点,力扣上的大佬们的题解质量是非…...
《Python WEB安全 库全解析》
《Python WEB安全 库全解析》 一、Python WEB安全 库概述二、常见的 Python WEB安全 库介绍1. Jiasule2. Awesome Python Security3. Flask-Security4. Flask-SeaSurf 三、Python WEB 安全库的优缺点1. 优点2. 缺点 四、Python WEB 安全库的使用场景1. 开发 Web 应用2. 处理敏感…...
Linux yum-config-manager命令异常
错误信息 使用 yum-config-manager命令时错误信息如下 sudo yum-config-manager \ > --add-repo \ > https://download.docker.com/linux/centos/docker-ce.repo sudo: yum-config-manager: command not found 解决办法 第一步: sudo yum -y install yum-u…...
ios 开发配置蓝牙
如果使用了蓝牙功能, 又没有配置, 会出现以下错误: This app has crashed because it attempted to access privacy-sensitive data without a usage description. The apps Info.plist must contain an NSBluetoothAlwaysUsageDescription key with a string value explaini…...
geoserver(1) 发布sql 图层 支持自定义参数
前提使用postgis 数据库支持关联 join 支持 in,not in,like,及其他sql原生函数 新增sql图层 编写自定义sql 编辑sql语句必须输出带有geom数据 正则表达式去除 设置id以及坐标参考系 预览sql图层效果 拼接sql参数 http://xxx.com/geoserver/weather/wms?SERVICEWMS&VERSI…...
Linux:network:添加ip的时候自动添加一个本地路由
文章目录 问题问题 最近在看一个路由的问题,顺便看内核代码,发现在添加IP的时候,内核会自动添加一个local route。 net/ipv4/devinet.c inet_rtm_newaddr->__inet_insert_ifa /* Send message first, then call notifier.Notifier will trigger FIB update, so thatlis…...
go 集成nacos注册中心、配置中心
使用限制 Go>v1.15 Nacos>2.x 安装 使用go get安装SDK: go get -u github.com/nacos-group/nacos-sdk-go/v2 快速使用 初始化客户端配置ClientConfig constant.ClientConfig{TimeoutMs uint64 // 请求Nacos服务端的超时时间,默…...
ssd202d-badblock-坏块检测
这边文章讲述的是坏快检测功能 思路: 1.第一次烧录固件会实现跳坏块,但是后续使用会导致坏块的产生; 于是我在uboot环境变量添加了两个变量来控制坏快 lb_badnum //坏块个数 lb_badoff //坏块所在位置 2.第一次开机会根据lb_badnum是否…...
MySQL-练习-数据介绍
文章目录 一. 数据介绍1. 数据结构2. 创建数据库,数据表3. 员工表(employees)练习1 4. 顾客表(customers)练习2 5. 商品(products)和商品类别(categories)表练习3 6. 供应商表(suppliers)练习4 7. 订单和订单明细表练习5 二. 数据汇总三. 使用CASE WHEN …...
React框架:解锁现代化Web开发的新维度
在当今前端开发领域,React 无疑是一颗璀璨的明星。React 是由 Facebook 开发的用于构建用户界面的 JavaScript 库,它在前端开发中占据着重要的地位,为开发者提供了一种高效、灵活且可维护的方式来构建复杂的用户界面。 一、React 的背景与开…...
电阻功率,限流,等效电阻
1 电阻额定功率 2 电阻限流作用 3 电阻并联等效电阻...
Qt | 开发工具(top1)
Qt Creator 跨平台、完整的集成开发环境(IDE),供应用程序开发者创建用于多个桌面、嵌入式和移动设备平台的应用程序。 Qt Linguist 一套将Qt C和Qt Quick应用程序翻译成本地语言的工具。 qmake Qt自动化构建工具,简化了不同平台的构建过程。…...
Node.js express
1. express 介绍 express 是一个基于 Node.js 平台的极简、灵活的 WEB 应用开发框架,官方网址:https://www.expressjs.com.cn/简单来说,express 是一个封装好的工具包,封装了很多功能,便于我们开发 WEB 应用ÿ…...
ios h5中在fixed元素中的input被focus时,键盘遮挡input (van-popup、van-feild)
问题描述: 前提:我使用的是vant组件库,其中一个页面中有一个van-popup组件,van-popup组件中又嵌套了一个van-field组件预期结果:当点击van-feild输入框时,键盘弹起,输入框显示在键盘上方实际结…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
LRU 缓存机制详解与实现(Java版) + 力扣解决
📌 LRU 缓存机制详解与实现(Java版) 一、📖 问题背景 在日常开发中,我们经常会使用 缓存(Cache) 来提升性能。但由于内存有限,缓存不可能无限增长,于是需要策略决定&am…...
[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
