当前位置: 首页 > news >正文

auto-gptq安装以及不适配软硬件环境可能出现的问题及解决方式

目录

    • 1、auto-gptq是什么?
    • 2、auto-gptq安装
    • 3、auto-gptq不正确安装可能会出现的问题
      • (1)爆出:`CUDA extension not installed.`
      • (2)没有报错但是推理速度超级慢

1、auto-gptq是什么?

Auto-GPTQ 是一种专注于 量化深度学习模型 的工具库。它的主要目标是通过量化技术(Quantization)将大型语言模型(LLM)等深度学习模型的大小和计算复杂度显著减少,从而提高推理效率,同时尽可能保持模型的性能。

2、auto-gptq安装

在Linux和Windows上,AutoGPTQ可以通过预先构建的轮子为特定的PyTorch版本安装:

AutoGPTQ versionCUDA/ROCm versionInstallationBuilt against PyTorch
latest (0.7.1)CUDA 11.8pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/2.2.1+cu118
latest (0.7.1)CUDA 12.1pip install auto-gptq2.2.1+cu121
latest (0.7.1)ROCm 5.7pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm571/2.2.1+rocm5.7
0.7.0CUDA 11.8pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/2.2.0+cu118
0.7.0CUDA 12.1pip install auto-gptq2.2.0+cu121
0.7.0ROCm 5.7pip install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm571/2.2.0+rocm5.7
0.6.0CUDA 11.8pip install auto-gptq==0.6.0 --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/2.1.1+cu118
0.6.0CUDA 12.1pip install auto-gptq==0.6.02.1.1+cu121
0.6.0ROCm 5.6pip install auto-gptq==0.6.0 --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm561/2.1.1+rocm5.6
0.5.1CUDA 11.8pip install auto-gptq==0.5.1 --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/2.1.0+cu118
0.5.1CUDA 12.1pip install auto-gptq==0.5.12.1.0+cu121
0.5.1ROCm 5.6pip install auto-gptq==0.5.1 --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm561/2.1.0+rocm5.6

AutoGPTQ is not available on macOS.
注意:安装的auto-gptq版本必须与CUDA和pytorch版本都适配,安装完之后推理速度很慢可能是需要从源码安装

3、auto-gptq不正确安装可能会出现的问题

(1)爆出:CUDA extension not installed.

在这里插入图片描述

这个问题我一直以为是CUDA和pytorch没配置好,或者不适配硬件,甚至以为是没有安装cudnn的原因,但最后发现原来是安装的auto-gptq不适配当下环境。

注意按照上面的方法安装auto-gptq仍然可能报错或者不适配,此时应该从源码安装,可以参考教程AutoGPTQ/README_zh.md at main · AutoGPTQ/AutoGPTQ,或者解决 GPTQ 模型导入后推理生成 Tokens 速度很慢的问题(从源码重新安装 Auto-GPTQ)_auto gptq 源码构建非cuda版本-CSDN博客

以下摘自官方文档
克隆源码:

git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ

然后,从项目目录安装:

pip install .

正如在快速安装一节,你可以使用 BUILD_CUDA_EXT=0 来取消构建 cuda 拓展。

如果你想要使用 triton 加速且其能够被你的操作系统所支持,请使用 .[triton]

对应 AMD GPUs,为了从源码安装以支持 RoCm,请设置 ROCM_VERSION 环境变量。同时通过设置
PYTORCH_ROCM_ARCH
(reference)
可提升编译速度,例如:对于 MI200 系列设备,该变量可设为 gfx90a。例子:

ROCM_VERSION=5.6 pip install .

对于 RoCm 系统,在从源码安装时额外需要提前安装以下包:rocsparse-dev, hipsparse-dev,
rocthrust-dev, rocblas-dev and hipblas-dev

(2)没有报错但是推理速度超级慢

此时查看auto-gptq版本,如果版本后没有带cu1xx,则可能是需要从源码安装

相关文章:

auto-gptq安装以及不适配软硬件环境可能出现的问题及解决方式

目录 1、auto-gptq是什么?2、auto-gptq安装3、auto-gptq不正确安装可能会出现的问题(1)爆出:CUDA extension not installed.(2)没有报错但是推理速度超级慢 1、auto-gptq是什么? Auto-GPTQ 是一…...

【R语言】基础知识

一、对象与变量 R语言中的所有事物都是对象,如向量、列表、函数,变量、甚至环境等。它的所有代码都是基于对象object的操作,变量只是调用对象的手段。 1、对象 在R语言中,对计算机内存的访问是通过对象实现的。 # 字符型向量 …...

【一本通】虫洞

【一本通】虫洞 C语言代码C代码JAVA代码 💐The Begin💐点点关注,收藏不迷路💐 John在他的农场中闲逛时发现了许多虫洞。虫洞可以看作一条十分奇特的有向边,并可以使你返回到过去的一个时刻(相对你进入虫洞之…...

python爬虫--小白篇【爬虫实践】

一、前言 1.1、王者荣耀皮肤爬虫 根据王者荣耀链接,将王者荣耀的全部英雄的全部皮肤图片爬取保存到本地。经过分析得到任务的三个步骤: 根据首页全部英雄列表连接获取全部英雄的名称hero_name以及对应的hero_id;根据单个英雄的hero_name和h…...

Unity背包道具拖拽(极简版实现)

(感觉Csdn代码页面可以再大一点或者加个放大功能 不然得划着看不太舒服) 1.关键接口,三个拖拽相关的 2.关键参数,PointerEventData 一直没仔细看过,其实有包含鼠标相关的很多参数,鼠标点击次数&#xff…...

spark读取普通文件

spark读取普通文件 txt文件 """ 将一行数据当做一个字段,需要自己切割 字段名称为value 表结构 可以从sql中搞 """ df spark.read.text("../../data/wordcount/input/data.txt") df spark.read.format("text"…...

MySQL SQL语句性能优化

MySQL SQL语句性能优化指南 一、查询设计优化1. 避免 SELECT *2. 使用 WHERE 进行条件过滤3. 避免在索引列上使用函数和表达式4. 使用 LIMIT 限制返回行数5. 避免使用子查询6. 优化 JOIN 操作7. 避免全表扫描 二、索引优化1. 使用合适的索引2. 覆盖索引3. 索引选择性4. 多列索引…...

【蓝桥杯每日一题】技能升级

技能升级 2024-12-10 蓝桥杯每日一题 技能升级 二分 题目大意 一个角色有 N 种可以增加攻击力的技能,对于第 i 个技能首次升级可以提升 A i A_i Ai​ 点攻击力,随后的每次升级增加的攻击力都会减少 B i B_i Bi​ 。升级 ⌈ A i B i ⌉ \lceil \frac{A…...

css 实现在一条线上流动小物体(offset-path)

直接贴代码,留几个参考网址给大家 【SVG】路径<Path>标签详解,一次搞懂所有命令参数 探秘神奇的运动路径动画 Motion Path <!DOCTYPE html> <html lang="en"> <head><meta charset="UTF-8"><meta name="viewport&quo…...

探索 Robyn 框架 —— 下一代高性能 Web 框架

技术博客&#xff1a;探索 Robyn 框架 —— 下一代高性能 Web 框架 什么是 Robyn&#xff1f; Robyn 是一个用 Rust 编写的高性能 Web 框架&#xff0c;旨在通过极简设计和高效并发处理&#xff0c;帮助开发者快速构建可扩展的现代 Web 应用。得益于 Rust 的内存安全性和性能…...

STL容器-map P3613【深基15.例2】寄包柜 普及-

题目来源&#xff1a;洛谷题库 文章目录 map例题map知识点map使用注意&#xff1a;map的常用用法 map例题 P3613【深基15.例2】寄包柜 普及- 题意 根据数据插入/查询 思路 map键值对可以根据柜子编号查找物品&#xff0c;但是柜子又有很多个&#xff0c;考虑数组或者map数组…...

【MySQL 进阶之路】了解 性能优化 与 设计原则

1.B树的优势 “矮胖”结构&#xff1a; 矮&#xff1a;B树的每个节点存储更多的关键字&#xff0c;从而减少了树的层级&#xff08;最多三层&#xff09;&#xff0c;减少了磁盘I/O操作&#xff0c;提高了查询效率。胖&#xff1a;叶子节点存储实际的数据&#xff0c;并使用双…...

MySQL之数据库三大范式

一、什么是范式&#xff1f; 范式是数据库遵循设计时遵循的一种规范&#xff0c;不同的规范要求遵循不同的范式。 &#xff08;范式是具有最小冗余的表结构&#xff09; 范式可以 提高数据的一致性和 减少数据冗余和 更新异常的问题 数据库有六种范式&#xff08;1NF/2NF/3NF…...

[大数据]Hudi

G:\Bigdata\17.hudi\大数据技术之数据湖Hudi 第1章 Hudi概述 1.1 Hudi简介 Apache Hudi(Hadoop Upserts Delete and Incremental)是下一代流数据湖平台。Apache Hudi将核心仓库和数据库功能直接引入数据湖。Hudi提供了表、事务、高效的upserts/delete、高级索引、流摄取服…...

jenkins harbor安装

Harbor是一个企业级Docker镜像仓库‌。 文章目录 1. 什么是Docker私有仓库2. Docker有哪些私有仓库3. Harbor简介4. Harbor安装 1. 什么是Docker私有仓库 Docker私有仓库是用于存储和管理Docker镜像的私有存储库。Docker默认会有一个公共的仓库Docker Hub&#xff0c;而与Dock…...

JavaScript 高级特性与 ES6 新特性:正则表达式的深度探索

在现代 JavaScript 开发中&#xff0c;正则表达式&#xff08;Regular Expressions&#xff09;和高级特性、ES6 新特性的结合使用&#xff0c;能够极大地提升代码的简洁性、可读性和功能性。本文将深入探讨 JavaScript 中的正则表达式及其在高级特性和 ES6 新特性中的应用&…...

正则表达式——参考视频B站《奇乐编程学院》

智能指针 一、背景&#x1f388;1.1. 模式匹配&#x1f388;1.2. 文本替换&#x1f388;1.3. 数据验证&#x1f388;1.4. 信息提取&#x1f388;1.5. 拆分字符串&#x1f388;1.6. 高级搜索功能 二、原料2.1 参考视频2.2 验证网址 三、用法3.1 限定符3.1.1 ?3.1.2 *3.1.3 3.1.…...

【FFmpeg】FFmpeg 内存结构 ⑥ ( 搭建开发环境 | AVPacket 创建与释放代码分析 | AVPacket 内存使用注意事项 )

文章目录 一、搭建开发环境1、开发环境搭建参考2、项目搭建 二、AVPacket 创建与释放代码分析1、AVPacket 创建与释放代码2、Qt 单步调试方法3、单步调试 - 分析 AVPacket 创建与销毁代码 三、AVPacket 内存使用注意事项1、谨慎使用 av_init_packet 函数2、av_init_packet 函数…...

【多模态文档智能】OCR-free感知多模态大模型技术链路及训练数据细节

目前的一些多模态大模型的工作倾向于使用MLLM进行推理任务&#xff0c;然而&#xff0c;纯OCR任务偏向于模型的感知能力&#xff0c;对于文档场景&#xff0c;由于文字密度较高&#xff0c;现有方法往往通过增加图像token的数量来提升性能。这种策略在增加新的语言时&#xff0…...

Mybatis动态sql执行过程

动态SQL的执行原理主要涉及到在运行时根据条件动态地生成SQL语句&#xff0c;然后将其发送给数据库执行。以下是动态SQL执行原理的详细解释&#xff1a; 一、接收参数 动态SQL首先会根据用户的输入或系统的条件接收参数。这些参数可以是查询条件、更新数据等&#xff0c;它们…...

leetcode 31 Next Permutation

题意 找到下一个permutation是什么&#xff0c;对于一个数组[1&#xff0c;2&#xff0c;3]&#xff0c;下一个排列就是[1, 3, 2] 链接 https://leetcode.com/problems/next-permutation/ 思考 首先任何一个permutation满足一个性质&#xff0c;从某个位置往后一定是降序。…...

每日一练 | 华为 eSight 创建的缺省角色

01 真题题目 下列选项中&#xff0c;不属于华为 eSight 创建的缺省角色的是&#xff1a; A. Administrator B. Monitor C. Operator D. End-User 02 真题答案 D 03 答案解析 华为 eSight 是一款综合性的网络管理平台&#xff0c;提供了多种管理和监控功能。 为了确保不同用…...

PyTorch基本使用-自动微分模块

学习目的&#xff1a;掌握自动微分模块的使用 训练神经网络时&#xff0c;最常用的算法就是反向传播。在该算法中&#xff0c;参数&#xff08;模型权重&#xff09;会根据损失函数关于对应参数的梯度进行调整。为了计算这些梯度&#xff0c;PyTorch 内置了名为 torch.autogra…...

libevent-Reactor设计模式【1】

一、Libevent概述 1、简介 Libevent 是一个用C语言编写的、轻量级的开源高性能事件通知库&#xff0c;主要有以下几个亮点&#xff1a;事件驱动&#xff08; event-driven&#xff09;&#xff0c;高性能;轻量级&#xff0c;专注于网络&#xff0c;不如 ACE 那么臃肿庞大&#…...

奇奇怪怪的错误-Tag和space不兼容

报错信息如下&#xff1a; TabError: inconsistent use of tabs and spaces in indentation make: *** [Makefile:24: train] Error 1不能按Tab&#xff0c;要老老实实按space 不过可以在编辑器里面改&#xff0c;把它们调整成一致的&#xff1b;...

29.攻防世界ics-06

ics-06 难度&#xff1a;1 方向&#xff1a;Web 题目描述: 云平台报表中心收集了设备管理基础服务的数据&#xff0c;但是数据被删除了&#xff0c;只有一处留下了入侵者的痕迹。 进入靶场 发现有一处能点动 多了个id1 我其实尝试改过id数&#xff0c;不过没什么变化&#xf…...

强化学习路径规划:基于SARSA算法的移动机器人路径规划,可以更改地图大小及起始点,可以自定义障碍物,MATLAB代码

一、SARSA算法概述 SARSA&#xff08;State-Action-Reward-State-Action&#xff09;是一种在线强化学习算法&#xff0c;用于解决决策问题&#xff0c;特别是在部分可观测的马尔可夫决策过程&#xff08;POMDPs&#xff09;中。SARSA算法的核心思想是通过与环境的交互来学习一…...

【MFC】如何读取rtf文件并进行展示

tf是微软的一个带格式的文件&#xff0c;比word简单&#xff0c;我们可以用写字板等程序打开编辑。下面以具体实例讲解如何在自己程序中展示rtf文件。 首先使用VS2022创建一个MFC的工程。 VIEW类需要选择richview类&#xff0c;用于展示&#xff0c;如下图&#xff1a; 运行效…...

Vulhub:Log4j[漏洞复现]

CVE-2017-5645(Log4j反序列化) 启动靶场环境 docker-compose up -d 靶机IPV4地址 ifconfig | grep eth0 -A 5 ┌──(root㉿kali)-[/home/kali/Desktop/temp] └─# ifconfig | grep eth0 -A 5 eth0: flags4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 in…...

面向预测性维护的TinyML技术栈全面综述

论文标题&#xff1a;A Holistic Review of the TinyML Stack for Predictive Maintenance&#xff08;面向预测性维护的TinyML技术栈全面综述&#xff09; 作者信息&#xff1a;Emil Njor, Mohammad Amin Hasanpour, Jan Madsen, Xenofon Fafoutis&#xff0c;均来自丹麦技术…...