GPTcelltype——scRNA-seq注释
#安装包
install.packages("openai")
remotes::install_github("Winnie09/GPTCelltype")
#填写API
Sys.setenv(OPENAI_API_KEY = 'your_openai_API_key')
#加载包
#Load packages
library(GPTCelltype)
library(openai)
#准备文件
#Assume you have already run the Seurat pipeline https://satijalab.org/seurat/
#"obj" is the Seurat object; "markers" is the output from FindAllMarkers(obj)
#Cell type annotation by GPT-4
##注释
res <- gptcelltype(markers, model = 'gpt-4')
##添加到metadata
# Assign cell type annotation back to Seurat object
obj@meta.data$celltype <- as.factor(res[as.character(Idents(obj))])
##可视化
# Visualize cell type annotation on UMAP
DimPlot(obj,group.by='celltype')
下面是代码逐行详细解释及中文翻译:```r
#安装包
install.packages("openai")
这行代码安装openai
包,这是一个与OpenAI API交互的R包。
- 中文翻译:安装
openai
包,这是一个与OpenAI API交互的R包。
remotes::install_github("Winnie09/GPTCelltype")
这行代码使用remotes
包从GitHub安装名为GPTCelltype
的包,GPTCelltype
包提供了一些功能来注释细胞类型。
- 中文翻译:使用
remotes
包从GitHub安装GPTCelltype
包,该包提供细胞类型注释功能。
#填写API
Sys.setenv(OPENAI_API_KEY = 'your_openai_API_key')
这行代码设置环境变量OPENAI_API_KEY
,用于存储你的OpenAI API密钥。务必替换'your_openai_API_key'
为你的实际API密钥。
- 中文翻译:设置环境变量
OPENAI_API_KEY
,用于存储你的OpenAI API密钥。确保替换为你的实际API密钥。
#加载包
#Load packages
library(GPTCelltype)
library(openai)
这两行代码加载之前安装的两个R包:GPTCelltype
和openai
,以便可以使用它们的功能。
- 中文翻译:加载之前安装的两个R包:
GPTCelltype
和openai
,以便能够使用它们的功能。
#准备文件
#Assume you have already run the Seurat pipeline https://satijalab.org/seurat/
这段注释说明在运行后续代码之前,用户需要先使用Seurat分析工具对数据进行预处理。
- 中文翻译:假设你已经运行了Seurat管道以处理数据。
# "obj" 是 Seurat 对象; "markers" 是来自 FindAllMarkers(obj) 的输出
这条注释进一步说明了obj
是Seurat对象,而markers
是通过FindAllMarkers(obj)
函数获得的标记基因数据。
- 中文翻译:
"obj"
是 Seurat 对象;"markers"
是来自FindAllMarkers(obj)
的输出。
#Cell type annotation by GPT-4
##注释
res <- gptcelltype(markers, model = 'gpt-4')
这里调用gptcelltype
函数使用GPT-4模型对细胞标记进行注释,将结果存储在res
变量中。
- 中文翻译:使用GPT-4模型进行细胞类型注释,将结果存储在
res
变量中。
##添加到metadata
# Assign cell type annotation back to Seurat object
obj@meta.data$celltype <- as.factor(res[as.character(Idents(obj))])
这行代码将注释结果res
所对应的细胞类型赋值给Seurat对象obj
的meta.data
属性中的celltype
列。
- 中文翻译:将细胞类型注释结果赋值回Seurat对象的
meta.data
中。
##可视化
# Visualize cell type annotation on UMAP
DimPlot(obj, group.by='celltype')
最后这行代码使用DimPlot
函数在UMAP图上可视化细胞类型注释,以celltype
作为分组依据。
- 中文翻译:在UMAP图上可视化细胞类型注释,以
celltype
作为分组依据。
``
原文中考虑到network相关问题,推荐了另外一个平替
参考:
https://mp.weixin.qq.com/s/xPQQ5v8nIWU1DwfdAxjdfw
相关文章:

GPTcelltype——scRNA-seq注释
#安装包 install.packages("openai") remotes::install_github("Winnie09/GPTCelltype") #填写API Sys.setenv(OPENAI_API_KEY your_openai_API_key) #加载包 #Load packages library(GPTCelltype) library(openai) #准备文件 #Assume you have already r…...

AI与大数据的深度结合:驱动决策的革命性力量
引言:数字时代的决策挑战 在这个信息爆炸的数字时代,数据早已渗透到我们生活的方方面面。全球每天产生的数据量呈指数级增长,无论是用户的消费行为、设备的运行状态,还是社会热点的实时动态,这些信息的规模和复杂性前所…...
Java多线程与线程池技术详解(九)
面对苦难的态度:《病隙碎笔》“不断的苦难才是不断地需要信心的原因,这是信心的原则,不可稍有更动。” 孤独与心灵的成长:《我与地坛》“孤独的心必是充盈的心,充盈得要流溢出来要冲涌出去,便渴望有人呼应他…...

【常考前端面试题总结】---2025
React fiber架构 1.为什么会出现 React fiber 架构? React 15 Stack Reconciler 是通过递归更新子组件 。由于递归执行,所以更新一旦开始,中途就无法中断。当层级很深时,递归更新时间超过了 16ms,用户交互就会卡顿。对于特别庞…...

什么是大语言模型(LLM)
1. 什么是大语言模型(LLM)? LLM 是一种基础模型(Foundation Model)的实例。 基础模型的特点: 使用大量未标注的自监督数据进行预训练。通过学习数据中的模式,生成具有普适性和可适应性的输出…...

柚坛工具箱Uotan Toolbox适配鸿蒙,刷机体验再升级
想要探索智能设备的无限可能?Uotan Toolbox(柚坛工具箱)将是您的得力助手。这款采用C#语言打造的创新型开源工具箱,以其独特的设计理念和全面的功能支持,正在改变着用户与移动设备互动的方式。 作为一款面向专业用户的…...

supervisor使用详解
参考文章: Supervisor使用详解 Supervisor 是一个用 Python 编写的客户端/服务器系统,它允许用户在类 UNIX 操作系统(如 Linux)上监控和控制进程。Supervisor 并不是一个分布式调度框架,而是一个进程管理工具&#x…...

win11电源设置在哪里?控制面板在哪里?如何关闭快速启动?
不知道微软咋想的,从win10(win8)开始搞事情,想把windows娱乐化。 娱乐化的特点就是只照顾傻子不考虑专家,系统设置统统藏起来,开机即用——也只能那么用。 搞两套界面做不到吗? win11非常头疼的…...

【论文阅读笔记】One Diffusion to Generate Them All
One Diffusion to Generate Them All 介绍理解 引言二、相关工作三、方法预备知识训练推理实现细节训练细节 数据集构建实验分结论附录 介绍 Paper:https://arxiv.org/abs/2411.16318 Code:https://github.com/lehduong/onediffusion Authors࿱…...

SpringCloud和Nacos的基础知识和使用
1.什么是SpringCloud 什么是微服务? 假如我们需要搭建一个网上购物系统,那么我们需要哪些功能呢?商品中心、订单中心和客户中心等。 当业务功能较少时,我们可以把这些功能塞到一个SpringBoot项目中来进行管理。但是随…...

人工智能技术的深度解析与推广【人工智能的应用场景】
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默, 忍不住分享一下给大家。点击跳转到网站 学习总结 1、掌握 JAVA入门到进阶知识(持续写作中……) 2、学会Oracle数据库入门到入土用法(创作中……) 3、手把…...

md5sum -c
md5sum -c xxx 命令用于验证文件的 MD5 校验和是否匹配。具体来说,-c 选项告诉 md5sum 命令去读取指定文件(通常是一个包含 MD5 校验和的文件),并与实际文件的 MD5 校验和进行比较。 工作原理: 生成校验和文件&#x…...

excel使用笔记
1.工作表1计算工作表2某列的和 假设我们有两个工作表,分别命名为“Sheet1”和“Sheet2”,我们想要求和这两个工作表中A1到A**单元格的数据,可以在任意一个工作表的单元格中输入以下公式: SUM(Sheet1!A1:A10, Sheet2!A1:A10) SUM…...

keepalived+nginx实现web高可用
目录 高可用集群搭建 Keepalived+nginx实现web高可用 一.节点规划 二.基础准备 1.修改主机名 2.关闭防火墙和selinux服务 三.用keepalived配置高可用 1.安装nginx服务 2.修改nginx配置文件 3.启动nginx 4.访问nginx 5.安装keepalived服务 6.编辑配置文件…...

边界层气象:脉动量预报方程展开 | 湍流脉动速度方差预报方程 | 平均湍流动能收支方程推导
写成分量形式 原始式子: ∂ u i ′ ∂ t u ‾ j ∂ u i ′ ∂ x j u j ′ ∂ u ‾ i ∂ x j u j ′ ∂ u i ′ ∂ x j − 1 ρ ‾ ⋅ ∂ p ′ ∂ x i g θ v ′ θ ‾ v δ i 3 f ϵ i j 3 u j ′ v ∂ 2 u i ′ ∂ x j 2 ∂ ( u i ′ u j ′ ‾ ) ∂ x j…...

TOSUN同星TsMaster使用入门——2、使用TS发送报文,使用graphics分析数据等
在第一章里面已经介绍了关于同星工程的创建和最基础的总线分析,接下来看看怎么使用TS发送报文以及图形化分析数据。 目录 一、使用Graphics分析报文信号/变量(对标CANoe Graphics) 二、使用数值窗口统计信号值/变量 三、使用TS发送报文 3…...

【操作系统】实验七:显示进程列表
实验7 显示进程列表 练习目的:编写一个模块,将它作为Linux内核空间的扩展来执行,并报告模块加载时内核的当前进程信息,进一步了解用户空间和内核空间的概念。 7.1 进程 进程是任何多道程序设计的操作系统中的基本概念。为了管理…...

day10 电商系统后台API——接口测试(使用postman)
【没有所谓的运气🍬,只有绝对的努力✊】 目录 实战项目简介: 1、用户管理(8个) 1.1 登录 1.2 获取用户数据列表 1.3 创建用户 1.4 修改用户状态 1.5 根据id查询用户 1.6 修改用户信息 1.7 删除单个用户 1.8 …...

JavaScript ES6+ 语法速通
一、ES6 基础语法 1. let 和 const 声明变量 let:块级作用域,可以重新赋值。const:块级作用域,声明常量,不能重新赋值。 let name Li Hua; name Li Ming; // 可修改const age 21; // age 22; // 报错࿰…...

移动端h5自适应rem适配最佳方案
网页开发中,我们常用的单位有如下几个: px:像素固定,无法适配各分辨率的移动设备em: 该单位受父容器影响,大小为父元素的倍数rem: 因为html根元素大小为16px,所以默认 1rem 16px,rem只受根元素…...

2024年使用 Cython 加速 Python 的一些简单步骤
文章结尾有最新热度的文章,感兴趣的可以去看看。 本文是经过严格查阅相关权威文献和资料,形成的专业的可靠的内容。全文数据都有据可依,可回溯。特别申明:数据和资料已获得授权。本文内容,不涉及任何偏颇观点,用中立态度客观事实描述事情本身 文章有点长,期望您能坚持看…...

EasyExcel设置表头上面的那种大标题(前端传递来的大标题)
1、首先得先引用easyExcel的版本依赖,我那 <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>2.2.6</version> </dependency> 2、然后得弄直接的实体类,&…...

【Linux网络编程】第十弹---打造初级网络计算器:从协议设计到服务实现
✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】【C详解】【Linux系统编程】【Linux网络编程】 目录 1、Protocol.hpp 1.1、Request类 1.1.1、基本结构 1.1.2、构造析构函数 1.1.3、序列化函数 1.1.4、反…...

无限弹窗?无限重启?
Windows开机自启目录: "%USERPROFILE%\AppData\Roaming\Microsoft\windows\StartMenu\Programs\Startup" 基于这个和 start 命令, shutdown 命令, 编写 bat 病毒程序。 无限弹窗 echo start cmd > hack.txt echo %0 >>…...

深入详解人工智能机器学习常见算法中的K-means聚类
目录 引言 1. K-means聚类的基本概念 1.1 K-means聚类的定义 1.2 K-means聚类的核心思想 1.3 K-means聚类的目标函数 2. K-means聚类的核心原理 2.1 初始化 2.2 分配 2.3 更新 2.4 迭代 3. K-means聚类的具体实现 3.1 K-means聚类的算法流程 3.2 K-means聚类的Pyt…...

lc146LRU缓存——模仿LinkedHashMap
146. LRU 缓存 - 力扣(LeetCode) 法1: 调用java现有的LinkedHashMap的方法,但不太理解反正都不需要扩容,super(capacity, 1F, true);不行吗,干嘛还弄个装载因子0.75还中途扩容一次浪费时间。 class LRUC…...

全面深入解析:C语言动态库
引言 动态库(Dynamic Library)是现代软件开发中不可或缺的一部分,它们不仅提高了代码的重用性和维护性,还显著提升了系统的性能和资源利用率。本文将全面探讨C语言中的动态库,从基础概念到高级应用,通过丰…...

运用 SSM 实现垃圾分类系统智能化升级
目 录 摘 要 1 前 言 3 第1章 概述 4 1.1 研究背景 4 1.2 研究目的 4 1.3 研究内容 4 第二章 开发技术介绍 5 2.1Java技术 6 2.2 Mysql数据库 6 2.3 B/S结构 7 2.4 SSM框架 8 第三章 系统分析 9 3.1 可行性分析 9 3.1.1 技术可行性 9 3.1.2 经济可行性 10 3.1.3 操作可行性 10 …...

LeNet-5:深度学习与卷积神经网络的里程碑
目录 编辑 引言 LeNet-5的结构与原理 输入层 C1层:卷积层 S2层:池化层 C3层:卷积层 S4层:池化层 C5层:卷积层 F6层:全连接层 输出层 LeNet-5的算法基础 LeNet-5的优点 LeNet-5的现代应用 …...

从资产流动分析WIF市场潜力X.game深究其他未知因素
近日,两则关于WIF最新消息引起了投资者们的注意。据报道,11月28日Vintermute在过去13小时内累计从Binance交易所提取了价值533万美元的WIF,此举不仅彰显了其强大的资金实力,更在某种程度上推动了WIF币价的反弹;另一方面…...