Graspness 端到端抓取点估计 | 环境搭建 | 模型推理测试
在复杂场景中实现抓取检测,Graspness是一种端到端的方法;
输入点云数据,输出抓取角度、抓取深度、夹具宽度等信息。
开源地址:https://github.com/rhett-chen/graspness_implementation?tab=readme-ov-file
论文地址:Graspness Discovery in Clutters for Fast and Accurate Grasp Detection
目录
1、准备GPU加速环境
2、安装torch和cudatoolkit
3、安装Graspness相关依赖库
4、安装MinkowskiEngine
5、安装pointnet2和knn
6、安装graspnetAPI
7、模型推理——抓取点估计
1、准备GPU加速环境
推荐在Conda环境中搭建环境,方便不同项目的管理~
首先需要安装好Nvidia 显卡驱动,后面还要安装CUDA11.1
输入命令:nvidia-smi,能看到显卡信息,说明Nvidia 显卡驱动安装好了

然后需要单独安装CUDA11.1了,上面虽然安装了CUDA12.2也不影响的
各种CUDA版本:https://developer.nvidia.com/cuda-toolkit-archive
CUDA11.1下载地址:https://developer.nvidia.com/cuda-11.1.0-download-archive
然后根据电脑的系统(Linux)、CPU类型,选择runfile方式

然后下载cuda_11.1.0_455.23.05_linux.run文件
wget https://developer.download.nvidia.com/compute/cuda/11.1.0/local_installers/cuda_11.1.0_455.23.05_linux.run
开始安装
sudo sh cuda_11.1.0_455.23.05_linux.run
来到下面的界面,点击“Continue”

输入“accept”

下面是关键,在455.23.05这里“回车”,取消安装;
这里X是表示需要安装的,我们只需安装CUDA11相关的即可

安装完成后,能看到/usr/local/cuda-11.1目录啦
(base) lgp@lgp-MS-7E07:~/2024_project$ ls /usr/local/cuda-11.1
bin EULA.txt libnvvp nsight-systems-2020.3.4 nvvm samples targets
DOCS extras nsight-compute-2020.2.0 nvml README src tools
参考1:https://blog.csdn.net/weixin_37926734/article/details/123033286
参考2:https://blog.csdn.net/weixin_49223002/article/details/120509776
2、安装torch和cudatoolkit
首先创建一个Conda环境,名字为graspness,python版本为3.8
然后进行graspness环境
conda create -n graspness python=3.8
conda activate graspness
这里需要安装pytorch1.8.2,cudatoolkit=11.1
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch-lts -c nvidia
pytorch1.8.2官网地址:https://pytorch.org/get-started/previous-versions/

3、安装Graspness相关依赖库
下载graspness代码
git clone https://github.com/rhett-chen/graspness_implementation.git
cd graspnet-graspness
编辑 requirements.txt,注释torch和MinkowskiEngine
# pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
# torch>=1.8
tensorboard==2.3
numpy==1.23.5
scipy
open3d>=0.8
Pillow
tqdm
# MinkowskiEngine==0.5.4
开始安装Graspness相关依赖库
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
4、安装MinkowskiEngine
在安装MinkowskiEngine之前,需要先安装相关的依赖
pip install ninja -i https://pypi.tuna.tsinghua.edu.cn/simple
conda install openblas-devel -c anaconda
然后本地安装的流程:
export CUDA_HOME=/usr/local/cuda-11.1 # 指定CUDA_HOME为cuda-11.1
export MAX_JOBS=2 # 降低占用CPU的核心数目,避免卡死(可选)
git clone https://github.com/NVIDIA/MinkowskiEngine.git
cd MinkowskiEngine
python setup.py install --blas_include_dirs=${CONDA_PREFIX}/include --blas=openblas
等待安装完成

5、安装pointnet2和knn
这些两个的安装需要CUDA编译的,依赖于前面的export CUDA_HOME=/usr/local/cuda-11.1
首先来到graspnet-graspness工程中,安装pointnet2
cd pointnet2
python setup.py install
再安装knn
cd knn
python setup.py install
6、安装graspnetAPI
这里安装的流程如下,逐条命令执行
git clone https://github.com/graspnet/graspnetAPI.git
cd graspnetAPI
pip install . -i https://pypi.tuna.tsinghua.edu.cn/simple
成功安装后,需要再安装numpy==1.23.5
pip install numpy==1.23.5 -i https://pypi.tuna.tsinghua.edu.cn/simple
到这里安装完成啦~
7、模型推理——抓取点估计
跑一下模型推理的demo,看看可视化的效果:

分享完成~
相关文章:
Graspness 端到端抓取点估计 | 环境搭建 | 模型推理测试
在复杂场景中实现抓取检测,Graspness是一种端到端的方法; 输入点云数据,输出抓取角度、抓取深度、夹具宽度等信息。 开源地址:https://github.com/rhett-chen/graspness_implementation?tabreadme-ov-file 论文地址࿱…...
交换机是如何避免数据碰撞的(详细解释 + 示例)
交换机是如何避免数据碰撞的(详细解释 示例) 1. 独立冲突域 交换机的每个端口都形成一个独立的冲突域。这意味着通过交换机连接的每个设备都拥有自己的通信通道,互不干扰。 示例: 假设一个交换机有4个端口,分别连接…...
魅族手机刷官方系统
从魅族官网下载固件 https://flyme.cn/firmware.html 找到自己的型号,里面有历史版本、最新版,按照需求下载。 下载的是update.zip,改名就不能升级了 方法1 直接点击下载的update.zip包就可以升级。 方法2 将文件移动到文件管理的根目录&a…...
女人想要的,是那份懂她的情绪价值
女人想要的,是那份懂她的情绪价值 在情感的世界里,我们常常听到这样的声音:“我不需要你帮我解决问题,我只希望你能懂我。”这句话,简单却深刻,它揭示了女性在情感需求上的一个独特面向——她们渴望的&…...
[python SQLAlchemy数据库操作入门]-10.性能优化:提升 SQLAlchemy 在股票数据处理中的速度
哈喽,大家好,我是木头左! 当处理大量数据时,如股票数据,默认的ORM操作可能会显得效率低下。本文将探讨如何通过一些技巧和策略来优化SQLAlchemy ORM的性能,从而提升其在股票数据处理中的速度。 1. 选择合适的数据类型 在定义模型时,选择合适的数据类型对于性能至关重要…...
【网络取证篇】取证实战之PHP服务器镜像网站重构及绕密分析
【网络取证篇】取证实战之PHP服务器镜像网站重构及绕密分析 在裸聊敲诈、虚假理财诈骗案件类型中,犯罪分子为了能实现更低成本、更快部署应用的目的,其服务器架构多为常见的初始化网站架构,也称为站库同体服务器!也就是说网站应用…...
[python]使用 Pandas 处理 Excel 数据:分割与展开列操作
在数据处理的过程中,时常需要对 Excel 表格中的数据进行清洗与转换,下面介绍使用 Python 中的 Pandas 库对 Excel 文件中的数据进行操作,具体包括分割列、展开数据、清除空格以及格式转换等操作。 目标: 读取一个没有表头的 Exc…...
单片机的选择因素
在选择单片机型号时,需要根据具体的应用需求来选择合适的单片机。单片机(Microcontroller Unit, MCU)是一种将计算机的主要部分集成在一个芯片上的微型计算机,它通常包括处理器、存储器、输入/输出接口等。随着技术的发展…...
软件测试兼容性测试丨分布式测试与多设备管理
本文将从分布式测试的概念、重要性以及实施方法入手,紧接着探讨多设备管理的必要性和管理策略,最后分析其对软件测试行业的前景与影响。 分布式测试简介 什么是分布式测试? 分布式测试是指将测试任务分散到不同的计算机或者设备上进行&…...
Linux驱动开发(13):输入子系统–按键输入实验
计算机的输入设备繁多,有按键、鼠标、键盘、触摸屏、游戏手柄等等,Linux内核为了能够将所有的输入设备进行统一的管理, 设计了输入子系统。为上层应用提供了统一的抽象层,各个输入设备的驱动程序只需上报产生的输入事件即可。 下…...
微服务篇-微服务保护:使用 Sentinel 来实现请求限流、线程隔离、服务熔断和 Fallback 备用方案的使用
🔥博客主页: 【小扳_-CSDN博客】 ❤感谢大家点赞👍收藏⭐评论✍ 文章目录 1.0 微服务保护 1.1 请求限流方案 1.2 线程隔离方案 1.3 服务熔断方案 2.0 Sentinel 2.1 Sentinel 安装 2.2 微服务整合 3.0 Sentinel-请求限流 4.0 Sentinel-线程隔离…...
vscode 排除文件夹搜索
排除的文件夹 node_modules/,dist/...
设计模式学习之——装饰者模式
装饰者模式(Decorator Pattern)是一种结构型设计模式,它允许你动态地向一个现有的对象添加新的行为,同时又不改变其结构。 一、定义与特点 定义:装饰者模式动态地将责任附加到对象上。若要扩展功能,装饰者…...
【Vulkan入门】10-CreatePipeline
目录 先叨叨Git信息关键代码TestPipeline::Initialize() 编译运行 先叨叨 到上篇为止已经创建了FrameBuffer和RenderPass。建立Pipeline的先决条件已经具备。本篇就来创建Pipeline。 Git信息 repository: https://gitee.com/J8_series/easy-car-uitag: 10-CreatePipelineurl…...
C++11 (一)
一、 C11的发展历史 C11是C 的第二个主要版本,并且是从 C98 起的最重要更新。 它引入了大量更改,标准化了既有实践,并改进了对C程序员可用的抽象。在它最终由IS0在2011年8月12日采纳前,人们曾使用名称“C0x”,因为它曾…...
系统性能优化
一、概述 性能优化的目标:是提高系统或应用程序的响应时间、吞吐量、cpu、内存、磁盘IO、网络、流量、JVM、Tomcat、DB等方面的性能指标。 性能优化需要有一些技巧:对于整个产品或项目而言,比如可以从前端优化、后端优化、架构优化、高并发…...
IMX6ULL开发板挂载 Ubuntu 的 NFS 目录,并以交叉编译得到的hello程序进行测试
首先参考博文 https://blog.csdn.net/wenhao_ir/article/details/144404637 使得IMX6ULL开发板、PC机上的USB网卡、VMware中的Ubuntu能互相Ping 通 然后开始将Ubuntu 的 NFS 目录挂载到Ubuntu中。 为什么挂载? 答:其实是把 Ubuntu中的某个目录通过NFS网…...
Xcode模拟器运行报错:The request was denied by service delegate
Xcode模拟器运行报错:The request was denied by service delegate 造成的原因: (1)新的苹果M系列芯片的Mac电脑 (2)此电脑首次安装启动Xcode的应用程序 (3)此电脑未安装Rosetta 2 解决方法: …...
ubuntu18.04配置实时内核
ubuntu系统:18.04 当前内核:5.4.0-84-generic 待安装实时内核: 5.6.19-rt11 1、查看当前版本 uname -r 2、下载内核与补丁 一种方式从官网自己下载 官方内核下载地址官方补丁下载地址阿里镜像内核下载地址(速度快࿰…...
Unity中Mesh重叠顶点合并参考及其应用
在Unity中,如果将一个模型文件(比如从max里面导出一个fbx文件)导入到编辑器中之后,Unity会把所有在原来在面列表中公用的顶点复制一份,保证每个三角形使用的顶点都是单独的,不与其它三角形共用顶点…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...
git: early EOF
macOS报错: Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...
如何配置一个sql server使得其它用户可以通过excel odbc获取数据
要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据,你需要完成以下配置步骤: ✅ 一、在 SQL Server 端配置(服务器设置) 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到:SQL Server 网络配…...
Linux安全加固:从攻防视角构建系统免疫
Linux安全加固:从攻防视角构建系统免疫 构建坚不可摧的数字堡垒 引言:攻防对抗的新纪元 在日益复杂的网络威胁环境中,Linux系统安全已从被动防御转向主动免疫。2023年全球网络安全报告显示,高级持续性威胁(APT)攻击同比增长65%,平均入侵停留时间缩短至48小时。本章将从…...
