当前位置: 首页 > news >正文

AI开发 - 用GPT写一个GPT应用的真实案例

就在昨天,我的同事推荐给我了一个第三方的公共大模型API,这个API集合了国际上上几乎所有知名的大模型,只需要很少的费用,就可以接入到这些大模型中并使用它们。成本之低,令人乍舌!包括我们现在无法试用的 GPT-4o也在其中。

考虑到平台规则,在这里我就不说这个公共API平台的名字了,简称A平台吧。

之前我写过一篇文章:大模型:把GPT搬回家 - chatGPT的本地化API -Node.js调用

在文章中,我介绍了如何实现GPT的本地化,但是前提是需要一台美国服务器,需要有openai的付费账号。

而现在,上面的这个公共API平台A平台,无需科学上网,也无需注册任何大模型的账号,直接就可以调用。所以,这让一切变得简单了很多。

所以我忽然突发奇想,能否让GTP ,用这个API 来设计一个GPT本地应用呢?

于是我我就开始尝试了,(需要说明的是,A平台也提供web版,我在这次测试中还是用了GTP的web对话来完整我上面的设想,主要是比较习惯)

于是我就问了GPT三轮 ,第一轮如图

 然后第二轮和第三轮,我加了一些其他的条件,比如增加了loading效果之类的、增加新话题按钮等等。GTP全部妥妥地完成了,包括 html、css、js 全部都妥妥的完成了!(注意:GPT 官方web对话框目前已经升级了,会自动切换画面,并且会在原答案上迭代答案,不再是不管三七二十一的输出,非常实用。)

然后我就又用Node.js 做了个webServer, 这样 可以放静态HTML ,也可以用来做我本地地API接入A平台的API,模型设置为GPT-4o,(如何用Node.js 来做一个webserver,这个非常简单 不会的同学请看我之前地web开发文章主要是 node.js 的路由如何实现的文章。)

以下是本地API接入A平台API的代码

async gptPost(req, response) {try {const data = req.body;const options = {url: `${baseUrl}/chat/completions`,method: "POST",headers: {"Authorization": `Bearer ${apiKey}`,"Content-Type": "application/json",},data: {model: "gpt-4o",messages: data,},};const res = await axios(options);return res.data.choices;} catch (err) {console.error('Error creating Kalurecord:', err);return null;}}

这样不到10分钟时间,我就把一个GTP本地应用做好了,而且是手机PC自适应。效果如下:

这是一个基于GPT-4o的本地化应用,我自己有个服务器和域名,于是丢上去就可以直接用了,在这个上面稍微增加一些功能,就可以完全成为一个商业化的产品,可以给很多企业提供服务。比如说 在单API的基础上,开设多个分帐号,这样企业内每个用户都又自己单独的'GPT', 相互间不干扰,上面我的存储只用了本地localStorage,如果企业用,可以用一个数据库来代替。这样信息也本地化了。这个后面我们可以继续讨论这个话题,让这个case变得更丰富和充实。

这个案例也说明,在未来,程序员的核心竞争力,不再是编写代码,不再是编程思维,不再是算法,也不再是经验,而是在提问题的结构化能力在对业务逻辑的理解和描述,这样才能让gpt充分理解你的需求,并且将需求细化、模块化,程序员最终进行组合,生成一个完整的产品。

可怕吗? 但这也是机会!

好吧,你学会了吗,赶紧动手吧! 

相关文章:

AI开发 - 用GPT写一个GPT应用的真实案例

就在昨天,我的同事推荐给我了一个第三方的公共大模型API,这个API集合了国际上上几乎所有知名的大模型,只需要很少的费用,就可以接入到这些大模型中并使用它们。成本之低,令人乍舌!包括我们现在无法试用的 G…...

C#—索引器

C#—索引器 索引器(Indexer)是类中的一个特殊成员,它能够让对象以类似数组的形式来操作,使程序看起来更为直观,更容易编写。索引器与属性类似,在定义索引器时同样会用到 get 和 set 访问器,不同…...

杨振宁大学物理视频中黄色的字去掉(稳定简洁版本,四)

杨振宁大学物理1214 色带矩形带来很大麻烦! 今天想到一个方法,整个色带矩形拉通,做个通铺处理,不计算,代码做最小化,最稳定追求。 因为黄色字稳定,我们找到他的中心,而这个色带矩形…...

排序算法(5):归并排序

问题 排序 [30, 24, 5, 58, 18, 36, 12, 42, 39] 归并排序 归并排序采用分治法,将序列分成若干子序列,每个子序列有序后再合并成有序的完整序列。 在数组排序中,如果只有一个数,那么它本身就是有序的。如果有两个数&#xff0…...

Gate学习(7)引入体素源

一、从GitHub下载体素源模型源码 下载地址:BenAuer2021/Phantoms-for-Nuclear-Medicine-Imaging-Simulation:用于核医学成像应用的模型(闪烁显像、SPECT 和 PET) --- BenAuer2021/Phantoms-For-Nuclear-Medicine-Imaging-Simulat…...

2024.12.14 TCP/IP 网络模型有哪几层?

2024.12.14 TCP/IP 网络模型有哪几层? 2024.12.14 今天周六 看到大伙都在考六级,我来复盘小林coding的计算机网络的知识点: TCP/IP 网络模型有哪几层? 问大家,为什么要有 TCP/IP 网络模型? 对于同一台设备上的进程间通信,有…...

item2 for macos

安装Item2 brew install iterm2 查看终端类型 cat /etc/shells Mac OS X 10.15 已经将默认的shell从Bash换成了zsh,所以不用安装,10.15以前的可以使用下面的命令进行安装 brew install zsh 安装Oh My ZSH # curl sh -c "$(curl -fsSL https://ra…...

二维三维空间上两点之间的距离

二维三维路径上,路径总距离以及途径点与障碍物之间的距离等都需要计算两点之间的距离。两点之间的距离有多种计算方法,这些计算方法主要取决于所考虑的空间维度、点的属性以及具体的应用场景。以下是一些常见的距离计算方法: 1. 曼哈顿距离(Manhattan distance) 定义:也…...

相机测距原理

基础概念的回顾 焦距的定义 焦距是指透镜或镜头的光学中心(通常是透镜的几何中心)到其焦点的距离。 焦点是光线的交点,它指的是透镜或镜头聚焦所有入射光线后汇聚的位置。焦点的位置与透镜的曲率和光线的入射角度相关。就是说所有光线经过…...

Debezium SchemaNameAdjuster 分析

Debezium SchemaNameAdjuster 分析 目录 1. 概述2. 核心功能3. 实现原理4. 应用场景5. 扩展示例6. 总结1. 概述 SchemaNameAdjuster 是 Debezium 中的一个工具类,主要用于确保 Schema 名称符合 Avro 命名规范。在数据库变更事件被转换为 Kafka 消息时,需要为每个表和字段创…...

Stable Diffusion绘画 | SDXL模型使用注意事项

注意事项 SDXL模型的使用,对电脑配置要求更高,需要 8GB 以上显存的显卡SDXL模型兼容性不太好,容易出现错误,对 Mac 电脑不友好只能选择 SDXL模型 训练的 LoRA 使用不能使用旧的 VAE文件 SDXL 专用 VAE 文件:sdxl_vae.…...

(五)机器学习 - 数据分布

数据分布(Data Distribution)是指数据在不同值或值区间内的分布情况,它描述了数据点在整个数据集中是如何分散或集中的。数据分布可以通过多种方式来分析和表示,包括图形和数值方法。 常见的数据分布特征和描述数据分布的方法&…...

Flink State面试题和参考答案-(上)

什么是 Flink 中的状态(State)? Flink 中的状态是指在 Flink 流处理程序中,操作符或函数用于存储和访问数据的机制。状态可以看作是在事件流处理过程中,随着时间推移而累积或变更的数据集合。在 Flink 的有状态流处理…...

利用开源Stable Diffusion模型实现图像压缩比竞争方法用更低的比特率生成更逼真的图像

概述 论文地址:https://studios.disneyresearch.com/app/uploads/2024/09/Lossy-Image-Compression-with-Foundation-Diffusion-Models-Paper.pdf 迪士尼的研究部门正在提供一种新的图像压缩方法,利用开源Stable Diffusion V1.2 模型,以比竞…...

QT信号与槽机制详解

当信号发出后,被连接的槽函数会自动被回调,类似观察者模式,当发生了感兴趣的事件,某一个操作就会被自动触发。信号是由于用户对窗口或控件进行了某些操作,导致窗口或控件产生了某个特定事件,这时Qt对应的窗…...

openGauss开源数据库实战二十二

文章目录 任务二十二 使用JDBC访问openGauss数据库任务目标实施步骤一、查看和设置隔离级别1.查看系统默认的隔离级别2.设置系统默认的隔离级别3.查看当前会话的隔离级别4.设置当前会话的隔离级别5.设置当前事务的隔离级别 二、读提交隔离级别测试三、可重复读隔离级别测试 任务…...

BurpSuite解决暴力破解时需要验证码问题

学习视频来自B站UP主泷羽sec,如涉及侵权马上删除文章。 笔记只是方便学习,以下内容只涉及学习内容,切莫逾越法律红线。 安全见闻,包含了各种网络安全,网络技术,旨在明白自己的渺小,知识的广博&a…...

WPF Combox使用 Text无法选择正确获取CHange后的Text

使用固定ComboxItem 无法通过 selectitem as object 来进行回去到 Content内的对香数据。那我只能这个样干&#xff1a; private void CBPaiweiLeixingSelect_Change(object sender, SelectionChangedEventArgs e){ ComboBox ThisBox sender as ComboBox;List<EDaxiaosuixi…...

【速览】设计模式(更新中)

目录 模式的历史设计模式是什么设计原则 SOLID1. 单一职责原则&#xff08;Single Responsibility Principle, SRP&#xff09;2. 开闭原则&#xff08;Open/Closed Principle, OCP&#xff09;3. 里氏替换原则&#xff08;Liskov Substitution Principle, LSP&#xff09;4. 接…...

【stable diffusion部署】Stable Diffusion开源本地化的文生图图生图AI

前言 主要功能 文生图、图生图、图像修复、处理、合成 所有的AI设计工具&#xff0c;安装包、模型和插件&#xff0c;都已经整理好了&#xff0c;&#x1f447;获取~ 系统要求 windows 10、11系统&#xff0c;建议6G显存&#xff0c;NVIDIA显卡推荐12G显存&#xff0c;内存建…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

云原生周刊:k0s 成为 CNCF 沙箱项目

开源项目推荐 HAMi HAMi&#xff08;原名 k8s‑vGPU‑scheduler&#xff09;是一款 CNCF Sandbox 级别的开源 K8s 中间件&#xff0c;通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度&#xff0c;为容器提供统一接口&#xff0c;实现细粒度资源配额…...

Android屏幕刷新率与FPS(Frames Per Second) 120hz

Android屏幕刷新率与FPS(Frames Per Second) 120hz 屏幕刷新率是屏幕每秒钟刷新显示内容的次数&#xff0c;单位是赫兹&#xff08;Hz&#xff09;。 60Hz 屏幕&#xff1a;每秒刷新 60 次&#xff0c;每次刷新间隔约 16.67ms 90Hz 屏幕&#xff1a;每秒刷新 90 次&#xff0c;…...

Oracle实用参考(13)——Oracle for Linux物理DG环境搭建(2)

13.2. Oracle for Linux物理DG环境搭建 Oracle 数据库的DataGuard技术方案,业界也称为DG,其在数据库高可用、容灾及负载分离等方面,都有着非常广泛的应用,对此,前面相关章节已做过较为详尽的讲解,此处不再赘述。 需要说明的是, DG方案又分为物理DG和逻辑DG,两者的搭建…...

简单聊下阿里云DNS劫持事件

阿里云域名被DNS劫持事件 事件总结 根据ICANN规则&#xff0c;域名注册商&#xff08;Verisign&#xff09;认定aliyuncs.com域名下的部分网站被用于非法活动&#xff08;如传播恶意软件&#xff09;&#xff1b;顶级域名DNS服务器将aliyuncs.com域名的DNS记录统一解析到shado…...

大模型智能体核心技术:CoT与ReAct深度解析

**导读&#xff1a;**在当今AI技术快速发展的背景下&#xff0c;大模型的推理能力和可解释性成为业界关注的焦点。本文深入解析了两项核心技术&#xff1a;CoT&#xff08;思维链&#xff09;和ReAct&#xff08;推理与行动&#xff09;&#xff0c;这两种方法正在重新定义大模…...