配置mysqld(读取选项内容,基本配置),数据目录(配置的必要性,目录下的内容,具体文件介绍,修改配置)
目录
配置mysqld
读取选项内容
介绍
启动脚本
基本配置
内容
端口号
数据目录的路径
配置的必要性
配置路径
mysql数据目录
具体文件
修改配置时
权限问题
配置mysqld
读取选项内容
介绍
会从[mysqld] / [server] 节点中读取选项内容
- 优先读取[server]
虽然服务端程序只有mysqld,但服务端程序启动脚本有多个
启动脚本
用来启动 MySQL 服务的主要方式
- 官网下的介绍:
其中, mysqld_multi 可以启动多个mysql服务
基本配置
内容
服务器的基本配置包括以下内容:
- 端口号 -- 3306
- 数据目录的路径
- mysql服务器的字符集和排序规则 -- utf8mb4 和 utf8mb4_general_ci
- 存储引擎 -- innodb
- 时区 -- +8:00(东八区)
端口号
如果数据库服务在公网部署时,最好是修改掉默认端口号
数据目录的路径
配置的必要性
windows下最好修改下数据目录:
- 因为默认路径是在c盘下
- 而数据目录存放的是用户数据(表数据),比较大,最好不要占用c盘空间
linux中也是有配置的必要性的:
- 虽然不存在c/d盘的区别,但存储数据的设备(例如:额外的硬盘或分区,通常会作为独立的设备挂载到某个目录下)和服务器硬盘(也就是我们日常使用的根目录)可能是两个设备
- 所以需要更改目录到存储数据的设备中
配置路径
- 在配置路径时,最好使用/ -- 两个系统通用
- 如果使用 \ 需要转义为 \\,防止被当做转义符处理
mysql数据目录
存放mysql服务器的管理信息,业务数据,日志文件,磁盘缓冲文件的默认存储位置
- mysql工作时主要操作的目录,是一个最重要的目录
管理信息
- 包括 MySQL 系统的内部数据和元数据
- 比如用户名+密码,用户权限,系统变量的默认值,维护数据库和表等
业务数据
- 即实际应用的数据表、索引、视图等
日志
- 二进制日志,错误日志,回滚日志等
磁盘缓冲文件
- 内存和磁盘交互时的缓冲数据保存位置
- 例如用于存储临时表的文件、排序文件等
具体文件
- binlog* -- 二进制日志
- *.pem -- 默认/自动生成的ssl和rsa证书和密钥文件
- #ib* -- 双写缓冲区文件
- ib_buffer_pool -- 内存池缓存文件
- ibdata1 -- 系统表空间文件
- ibtmp1 #innodb_temp -- 临时表空间文件
- innodb_redo -- 保存重做日志的文件
- mysql sys -- 系统级别的数据库
- mysql.ibd -- 保存管理信息的文件
- mysqld-auto.cnf -- 保存动态设置的系统变量
- undo* -- 撤销表空间,保存撤销日志的文件
- 用户数据库 -- 用户在mysql下创建数据库时,会在这个目录下创建一个子目录,库中的表在这个子目录下
修改配置时
如果要修改数据目录选项
- 最好先停止mysql服务,并把原目录下的文件全部复制到新路径,配置完成后再重启
为什么要全部复制过去?
- 因为源目录中包含了很多系统启动时需要的选项,包括账号密码端口号等
- 如果不拷贝过去,会导致服务器启动失败
权限问题
如果在设置时遇到权限问题,需要把目标数据目录的权限改成mysql
相关文章:
配置mysqld(读取选项内容,基本配置),数据目录(配置的必要性,目录下的内容,具体文件介绍,修改配置)
目录 配置mysqld 读取选项内容 介绍 启动脚本 基本配置 内容 端口号 数据目录的路径 配置的必要性 配置路径 mysql数据目录 具体文件 修改配置时 权限问题 配置mysqld 读取选项内容 介绍 会从[mysqld] / [server] 节点中读取选项内容 优先读取[server] 虽然服务…...
docker 容器相互访问
目前采用 network 方式 1. 创建自定义网络 docker network create network-group 如下 2. 相互访问的容器更改(目前演示redis 以及netcore api 访问redis ) //redis 原有容器删除 跟之前区别就是加入 --network network-group docker run \ -p 6379:…...
算法1(蓝桥杯18)-删除链表的倒数第 N 个节点
问题: 给你一个链表,删除链表的倒数第 n 个节点,并且返回链表的头节点。 输入:head 1 -> 2 -> 3 -> 4 -> 5 -> null, n 2 输出:1 -> 2 -> 3 -> 5 -> null输入:head 1 ->…...
【PyTorch】动态调整学习率 torch.optim.lr_scheduler.StepLR 调度器
文章目录 1. torch.optim.lr_scheduler.StepLR 官方文档详解2. 使用示例2.1 官方提供使用示例2.2 自己写代码测试方法2.2.1 get_last_lr() 方法2.2.2 state_dict() 方法2.2.3 load_state_dict() 保存和加载调度器 3. 思考3.1 为什么需要state_dict()3.2 get_lr() 与 get_last_l…...
AIGC drug design 人工智能生成式药物设计:基于 GPT 的 SMILES 生成与应用
人工智能生成式药物设计:基于 GPT 的 SMILES 生成与应用 1. 人工智能生成模型:解密 GPT 的工作原理 目录 引言 1.1 背景介绍 1.2 人工智能生成模型的兴起 1.3 GPT 系列模型的地位与影响 GPT 模型概述 2.1 什么是 GPT 2.2 GPT 的发展历程 2.3 GPT 与其…...
Python面试常见问题及答案4
一、内存管理相关 问题:Python中的垃圾回收机制是如何工作的? 答案:Python主要使用引用计数来进行垃圾回收,当对象的引用计数为0时,该对象就会被垃圾回收器回收。此外,Python还有一个循环垃圾收集器来处理循…...
开启第二阶段---蓝桥杯
一、12.10--数据类型的范围及转化 今天是刚开始,一天一道题 对于这道题我想要记录的是Java中的整数默认是 int 类型,如果数值超出了 int 的范围,就会发生溢出错误。为了避免这个问题,可以将数字表示为 long 类型,方法…...
npm内存溢出
项目过大运行项目内存溢出 报错代码 运行内存溢出 increase-memory-limit ‘“node --max-old-space-size8192”’ 不是内部或外部命令,也不是可运行的程序 FATAL ERROR: Ineffective mark-compacts near heap limit Allocation failed - JavaScript heap out of m…...
回归预测 | MATLAB实现CNN-BiGRU卷积神经网络结合双向门控循环单元多输入单输出回归预测
回归预测 | MATLAB实现CNN-BiGRU卷积神经网络结合双向门控循环单元多输入单输出回归预测 目录 回归预测 | MATLAB实现CNN-BiGRU卷积神经网络结合双向门控循环单元多输入单输出回归预测预测效果基本介绍程序设计参考资料预测效果 基本介绍 CNN-BiGRU,即卷积神经网络(CNN)与双…...
Android系统卡启动问题排查
Android系统启动正常来说会涉及到如下几个过程: 引导加载程序(Bootloader)Linux内核(Kernel),负责硬件抽象、内存管理、进程管理、网络堆栈等init进程 init进程读取init.rc配置文件,用于启动各…...
STP(生成树协议)
STP的基本概念 概述 STP是一个用于局域网中消除环路的协议。运行该协议的设备通过彼此交互信息而发现网络中的环路,并对某些接口进行阻塞以消除环路。STP在网络中运行后会持续监控网络的状态,当网络出现拓扑变更时,STP能够感知并且进行自动…...
【前端面试】随机、结构赋值、博弈题
解构赋值(Destructuring Assignment)是 JavaScript ES6 引入的一项非常有用的特性,它允许我们快速地从数组或对象中提取值,并将它们赋给变量。这种方式使得代码更加简洁、易读,并且能够减少重复的访问和赋值操作。 1.…...
Volta——开箱即用的Node.js 版本管理工具
Volta volta 是一个较新的 Node.js 版本管理器,旨在简化 Node.js 和其他工具的安装和管理,在 2019 年出世,仍在积极开发中。Volta 采用了与 nvm 不同的方法:它不是管理 Node.js 的多个版本,而是管理项目及其依赖项。当…...
ubuntu 磁盘空间满,找不到占用文件的目录
解决方法: 检查磁盘空间: 执行 df -h 查看各分区磁盘使用情况。 查找大文件或目录: 执行 du -sh /* 2>/dev/null 查找根目录下的大文件或目录,再逐一进入子目录使用相同命令查找。 清理缓存和临时文件: 清理 /t…...
1. 机器学习基本知识(5)——练习题(参考答案)
20.🔗本章代码笔记📓链接(需要🪜):(01_the_machine_learning_landscape.ipynb - Colab (google.com)) 如果你不想通过上面的官方网址下载本章的笔记,还可以在本篇博文的…...
spark-sql 备忘录
wordcount sc.textFile("../data/data.txt").flatMap(_.split(" ")).map((_,1)).reduceByKey(__).collect 读取json 文件 并通过sql 执行 join 查询 public static void main(String[] args) {SparkSession session SparkSession.builder().master(&qu…...
基于softmax回归的多分类
基于softmax回归的多分类任务是机器学习领域中的一种常见应用。softmax回归,又称多项逻辑回归或多类逻辑回归,是逻辑回归在多分类问题上的推广。以下是对基于softmax回归的多分类任务的详细解释: 一、softmax回归的原理 softmax回归的核心思想是通过softmax函数将输入数据…...
bs4基本运用
1. bs4基本使用 1.1. 简介 bs4的全称为 BeautifulSoup。和lxml一样,是一个html的解析器,主要功能也是解析数据和提取数据 。 本模块作为了解模块,实际开发中很少用这个模块去解析数据,大家可能会想为什么这个模块会逐渐被淘汰&…...
MySQL 时区参数 time_zone 详解
文章目录 前言1. 时区参数影响2. 如何设置3. 字段类型选择 前言 MySQL 时区参数 time_zone 有什么用?修改它有什么影响?如何设置该参数,本篇文章会详细介绍。 1. 时区参数影响 time_zone 参数影响着 MySQL 系统函数还有字段的 DEFAULT CUR…...
Redis - 消息队列 Stream
一、概述 消息队列 定义 消息队列模型:一种分布式系统中的消息传递方案,由消息队列、生产者和消费者组成消息队列:负责存储和管理消息的中间件,也称为消息代理(Message Broker)生产者:负责 产…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...






