当前位置: 首页 > news >正文

【工业机器视觉】基于深度学习的水表盘读数识别(4-训练与预测)

【工业机器视觉】基于深度学习的仪表盘识读(读数识别)(3)-CSDN博客

训练与预测

        Ultralytics YOLO指的是由Ultralytics公司开发的一系列基于YOLO(You Only Look Once)架构的目标检测算法。YOLO是一种实时目标检测系统,它能一次性预测图像中所有对象的边界框和类别概率,因此在速度上有很大的优势。

        Ultralytics是YOLOv3、YOLOv5等版本的维护者,并且推出了YOLOv8等一系列改进版本。这些模型通常具有更高的精度和更快的速度,同时保持了YOLO系列简单易用的特点。Ultralytics提供的YOLO实现通常是开源的,可以在GitHub等平台上找到,允许研究者和开发者使用、修改和贡献代码。

        此外,Ultralytics还提供了训练、评估和部署YOLO模型的工具和文档,使得用户能够根据自己的数据集定制YOLO模型,用于各种计算机视觉任务,如物体识别、跟踪等。

Home - Ultralytics YOLO Docs

本项目基于Ultralytics YOLOv8模型进行训练和预测。

下载项目

前往github:github.com

进入ultralytics目录,目录结构:

cfg:网络模型架构配置文件

my_datas:自定义数据集

weights:权重文件

需要安装的包:

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip install ultralytics==8.0.143

(如果要使用最新版的ultralytics,则不需要带版本号,最新版的已更新到YOLO11)

项目配置

为了快速上手,下面只介绍核心流程。在自定义数据集目录下,创建自己的项目(项目名称自定义即可),然后将数据准备好,最后创建一个data.yaml的文件,参考如下目录结构和配置:

data.yaml文件配置:

train、val:自定义数据集的训练和验证数据图片目录

nc:目标检测类别数量

names:目标检测类别

训练

在ultralytics目录下创建train.py脚本,如下:

from ultralytics import YOLOif __name__ == '__main__':model = YOLO('cfg/models/v8/yolov8s.yaml').load('yolov8s.pt')model.train(data='my_datas/detect-pointer/data.yaml', epochs=300, imgsz=640, task='detect', batch=64, device=0, amp=True, patience=10, close_mosaic=30)

加载网络模型和权重,本地没有权重文件时,会自动下载。更详细的训练参数请参考cfg目录下的default.yaml文件。

运行脚本开始训练,训练开始后,会在runs/detect目录下生成训练过程数据:

预测

创建predict.py脚本,与train.py同目录。

from ultralytics import YOLO
import cv2if __name__ == '__main__':img_path = 'assets/meter-pointer1.jpg'model = YOLO('runs/detect/train/weights/best.pt')img = cv2.imread(img_path)results = model.predict(img, imgsz=640, show=True, show_labels=True, show_conf=True, device=0, conf=0.8)cv2.waitKey(0)cv2.destroyAllWindows()

img_path:指定需要预测的图片路径

YOLO(...):加载训练好的模型

predict:预测

预测效果

指针目标检测:

最低位X0.001由目标检测直接分类得出结果,高位只需要检测到即可,后面需要结合梅花针分割模型,计算角度,映射读数。最后再通过修正算法修正误差,得到最终结果。

p2表示最低位读数是2,也就是0.002

指针区域梅花针分割:

circle_area:刻度盘

pointer:梅花针区域

字轮目标检测:

d10表示读数为0,是由0到1的过渡,同时也需要结合最高位指针读数X0.1的值,来进行修正

至此,我们已成功达成了本项目的第一阶段目标:实现了指针区域的目标检测与梅花针的精准分割,以及完成了字轮数字的自动识别任务,并且获得了预期的成果。

接下来的步骤将是开发上位机软件和应用相应的模型,通过集成并优化修正算法,以最终实现表盘读数的准确解析与输出。这一过程不仅将提升数据读取的自动化水平,也将显著增强系统的整体性能与可靠性。

相关文章:

【工业机器视觉】基于深度学习的水表盘读数识别(4-训练与预测)

【工业机器视觉】基于深度学习的仪表盘识读(读数识别)(3)-CSDN博客 训练与预测 Ultralytics YOLO指的是由Ultralytics公司开发的一系列基于YOLO(You Only Look Once)架构的目标检测算法。YOLO是一种实时目标检测系统,它…...

opencv获取摄像头的最大分辨率图像

事情是这样的,在拼多多花了40买了一个4k高清的摄像偷,确实清楚。但是我一直以为网络摄像头分辨率只有640*480,于是用python测试了一下,上代码 import cv2def get_max_resolution(camera_index):"""获取摄像头的最大分辨率。&…...

23.DDD与微服务

学习视频来源:DDD独家秘籍视频合集 https://space.bilibili.com/24690212/channel/collectiondetail?sid1940048&ctype0 文章目录 DDD与微服务的关系1. DDD可以用微服务实现,也可以不用微服务实现2. DDD是微服务拆分的必须参考项之一3. 微服务架构…...

Redis是什么?Redis和MongoDB的区别在那里?

Redis介绍 Redis(Remote Dictionary Server)是一个开源的、基于内存的数据结构存储系统,它可以用作数据库、缓存和消息中间件。以下是关于Redis的详细介绍: 一、数据结构支持 字符串(String) 这是Redis最…...

git SSL certificate problem: unable to get local issuer certificate

Git 客户端将会验证服务器端提供的SSL证书是否由受信任的证书颁发机构(Certification Authority,CA)签发。如果Git客户端无法找到或验证本地签发者证书,就会出现 unable to get local issuer certificate 或类似的错误。 该问题一…...

使用Keil V6编译 FreeRTOS CMSIS V2版本 ETH + Lwip 编译报错问题解决方式

网上其他人写的都解决不了,要不用的是CMSIS V1版本,根据他们的方式搞完还是报错,今天花点时间自己搞一下。 不想自己动手?没问题,模版已上传Gitee https://gitee.com/maybe_404/stm32-f4xx_-free-rtos_-lwip_-templa…...

驱动开发系列30 - Linux Graphics DRM光标绘制分析

一:概述 本文分析了 Linux 直接渲染管理器 (DRM) 绘制光标的过程,目的是将 OpenGL 与 DRM 连接,弄清楚整个调用逻辑。本文将详细描述这一过程,介绍如何在图形软件栈中实现光标渲染。整体软件栈的架构图也将展示其中的各个组成部分及其相互关系。 二:代码介绍 drm-cursor …...

如何利用Java爬虫获得淘宝买家秀

在电商平台上,买家秀数据是商家了解消费者反馈、优化产品和服务的重要资源。本文将详细介绍如何利用Java爬虫技术获取淘宝商品的买家秀信息,并提供一个完整的代码示例。 一、淘宝买家秀数据的重要性 买家秀数据包括买家上传的图片、视频、评论等内容&a…...

【ArcGIS】基于R语言、MaxEnt模型融合技术的物种分布模拟、参数优化方法、结果分析制图与论文写作

第一章、以问题导入的方式,深入掌握原理基础【理论篇】 1、R语言入门: (1)安装R及集成开发环境(IDE);(2)R语言基础语法与数据结构,包括:程序包安…...

虚幻引擎C++按键绑定

在项目的 Project Settings -> Engine -> Input 中进行配置。 配置输入映射的步骤: 打开 Project Settings: 在 Unreal Editor 中,点击菜单栏的 Edit -> Project Settings。 导航到 Input: 在 Project Settings 窗口的左侧导航栏中&#xff0…...

秒杀抢购场景下实战JVM级别锁与分布式锁

背景历史 在电商系统中,秒杀抢购活动是一种常见的营销手段。它通过设定极低的价格和有限的商品数量,吸引大量用户在特定时间点抢购,从而迅速增加销量、提升品牌曝光度和用户活跃度。然而,这种活动也对系统的性能和稳定性提出了极…...

【Pandas】pandas interval_range

Pandas2.2 General Top-level dealing with Interval data 方法描述interval_range([start, end, periods, freq, …])用于生成固定长度的区间序列 pandas.interval_range() pandas.interval_range() 是 Pandas 库中用于生成固定频率的 Interval 对象的函数。这些 Interval…...

有没有办法让爬虫更加高效,比如多线程处理?

要让Python爬虫更加高效,确实可以采用多线程处理。多线程可以显著提高爬虫的效率,因为它允许程序同时执行多个任务,从而减少等待时间。以下是一些提高爬虫效率的方法,特别是通过多线程技术: 1. 多线程爬虫 多线程爬虫…...

go-zero(十三)使用MapReduce并发

go zero 使用MapReduce并发 一、MapReduce 介绍 MapReduce 是一种用于并行计算的编程模型,特别适合在大规模数据处理场景中简化逻辑代码。 官方文档: https://go-zero.dev/docs/components/mr 1. MapReduce 的核心概念 在 MapReduce 中,主…...

【实操之 图像处理与百度api-python版本】

1 cgg带你建个工程 如图 不然你的pip baidu-aip 用不了 先对图片进行一点处理 $ 灰度处理 $ 滤波处理 参考 import cv2 import os def preprocess_images(input_folder, output_folder):# 确保输出文件夹存在if not os.path.exists(output_folder):os.makedirs(output_fol…...

java 导出word锁定且部分内容解锁可编辑

使用 Apache POI 创建带编辑限制的 Word 文档 在日常工作中,我们可能需要生成一些带有编辑限制的 Word 文档,例如某些段落只能被查看,而其他段落可以自由编辑。本文介绍如何使用 Apache POI 创建这样的文档,并通过代码实现相应的…...

SQL 在线格式化 - 加菲工具

SQL 在线格式化 打开网站 加菲工具 选择“SQL 在线格式化” 或者直接访问 https://www.orcc.online/tools/sql 输入sql,点击上方的格式化按钮即可 输入框得到格式化后的sql结果...

大数据法律法规——《关键信息基础设施安全保护条例》(山东省大数据职称考试)

大数据分析应用-初级 第一部分 基础知识 一、大数据法律法规、政策文件、相关标准 二、计算机基础知识 三、信息化基础知识 四、密码学 五、大数据安全 六、数据库系统 七、数据仓库. 第二部分 专业知识 一、大数据技术与应用 二、大数据分析模型 三、数据科学 大数据法律法规…...

【CVE-2024-5660】ARM CPU漏洞:硬件页面聚合(HPA)安全通告

安全之安全(security)博客目录导读 目录 一、概述 二、修改历史 三、什么是硬件页面聚合? 四、修复解决 一、概述 在一些基于arm的cpu中发现了一个问题,该问题可能允许修改的、不受信任的客户机操作系统...

数智读书笔记系列008 智人之上:从石器时代到AI时代的信息网络简史

书名:智人之上:从石器时代到AI时代的信息网络简史 作者:[以]尤瓦尔赫拉利 译者:林俊宏 出版时间:2024-09-01 ISBN:9787521768527 中信出版集团制作发行 作者信息 尤瓦尔・赫拉利 1976 年出生于以色列海法,是牛津大学历史学…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

微信小程序云开发平台MySQL的连接方式

注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性&#xf…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

以光量子为例,详解量子获取方式

光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...