基于Qwen2-VL模型针对LaTeX OCR任务进行微调训练 - 数据处理
基于Qwen2-VL模型针对LaTeX OCR任务进行微调训练 - 数据处理
flyfish
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_LoRA配置如何写
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_单图推理
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_原模型_单图推理
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_原模型_多图推理
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_多图推理
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_数据处理
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_训练
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_训练过程
完整代码在文末
数据集介绍
数据集采用的是 开源的AI-ModelScope/LaTeX_OCR/
https://modelscope.cn/datasets/AI-ModelScope/LaTeX_OCR/summary
程序中下载的是full
本仓库有 5 个数据集
small
是小数据集,样本数 110 条,用于测试
full
是印刷体约 100k 的完整数据集。实际上样本数略小于 100k,因为用 LaTeX 的抽象语法树剔除了很多不能渲染的 LaTeX。
synthetic_handwrite
是手写体 100k 的完整数据集,基于 full 的公式,使用手写字体合成而来,可以视为人类在纸上的手写体。样本数实际上略小于 100k,理由同上。
human_handwrite
是手写体较小数据集,更符合人类在电子屏上的手写体。主要来源于 CROHME。我们用 LaTeX 的抽象语法树校验过了。
human_handwrite_print
是来自 human_handwrite 的印刷体数据集,公式部分和 human_handwrite 相同,图片部分由公式用 LaTeX 渲染而来。
代码实现
代码实现对LaTeX OCR相关数据集的下载、处理以及格式转换,使其能够适用于后续的模型训练等任务。先是从ModelScope平台下载包含图片与LaTeX文本的数据集,经过处理生成对应的CSV文件,然后再将CSV文件转换为特定格式的JSON文件,并按照一定比例划分出训练集和验证集。
LaTeX_OCR 存储的图像文件
latex_ocr_train.csv 文件里面是生成图像路径和文本,是一一对应的。
该文件是中间生成
latex_ocr_train.json和latex_ocr_val.json训练使用的数据
[{"id": "identity_9001","conversations": [{"role": "user","value": "/home/sss/datasets/LaTeX_OCR/9000.jpg"},{"role": "assistant","value": "\\ln { \\mathcal J } = - 2 i \\alpha \\mathrm { T r } \\left[ \\gamma _ { 5 } \\varphi ( \\frac { \\not \\! \\! D } { \\Lambda } ) \\right]"}]},{"id": "identity_9002","conversations": [{"role": "user","value": "/home/sss/datasets/LaTeX_OCR/9001.jpg"},{"role": "assistant","value": "{ \\cal P } _ { * } ( \\chi ) \\propto \\exp [ 3 N ( \\chi ) ] ."}]},{"id": "identity_9003","conversations": [{"role": "user","value": "/home/sss/datasets/LaTeX_OCR/9002.jpg"},{"role": "assistant","value": "M ( S , R ) _ { n } = \\left( \\begin{matrix} { 1 } & { 0 } \\\\ { 1 } & { 1 } \\\\ \\end{matrix} \\right) ^ { \\otimes ( n - 1 ) } \\ ,"}]},
import os
from modelscope.msdatasets import MsDataset
import pandas as pd
import json
import argparsedef download_and_process_dataset(max_data_number: int, dataset_id: str, subset_name: str, split: str, dataset_dir: str, csv_path: str) -> None:"""从ModelScope下载数据集并处理成图片和LaTeX文本对。Args:max_data_number (int): 最大处理图片数量。dataset_id (str): ModelScope上数据集的标识符。subset_name (str): 数据集中子集的名称。split (str): 数据集的划分('train', 'test' 等)。dataset_dir (str): 图片保存目录。csv_path (str): 包含图片路径和LaTeX文本的CSV文件保存路径。"""# 从ModelScope加载数据集ds = MsDataset.load(dataset_id, subset_name=subset_name, split=split)print(f"加载的数据集包含 {len(ds)} 项")# 限制处理的总项数total = min(max_data_number, len(ds))# 如果不存在,则创建保存图片的目录os.makedirs(dataset_dir, exist_ok=True)# 初始化列表以存储图片路径及其对应的LaTeX文本image_paths = []texts = []for i in range(total):item = ds[i]text = item['text']image = item['image']# 保存图片并记录其路径image_path = os.path.abspath(os.path.join(dataset_dir, f'{i}.jpg'))image.save(image_path)# 将路径和文本添加到列表中image_paths.append(image_path)texts.append(text)# 每处理50张图片打印一次进度if (i + 1) % 50 == 0:print(f'正在处理第 {i+1}/{total} 张图片 ({(i+1)/total*100:.1f}%)')# 使用收集的数据创建DataFrame并保存为CSV文件df = pd.DataFrame({'image_path': image_paths,'text': texts,})df.to_csv(csv_path, index=False)print(f'数据处理完成,共处理了 {total} 张图片。')def convert_csv_to_json(csv_path: str, train_json_path: str, val_json_path: str, split_ratio: float) -> None:"""将CSV文件转换为JSON文件,并按照给定的比例划分训练集和验证集。Args:csv_path (str): CSV文件路径。train_json_path (str): 训练集JSON文件保存路径。val_json_path (str): 验证集JSON文件保存路径。split_ratio (float): 划分训练集和验证集的比例(例如:0.8 表示 80% 的数据作为训练集)。"""df = pd.read_csv(csv_path)conversations = []# 创建对话格式for i in range(len(df)):conversations.append({"id": f"identity_{i+1}","conversations": [{"role": "user","value": f"{df.iloc[i]['image_path']}"},{"role": "assistant", "value": str(df.iloc[i]['text'])}]})# 根据比例划分训练集和验证集split_index = int(len(conversations) * split_ratio)train_conversations = conversations[:split_index]val_conversations = conversations[split_index:]# 保存训练集with open(train_json_path, 'w', encoding='utf-8') as f:json.dump(train_conversations, f, ensure_ascii=False, indent=2)# 保存验证集with open(val_json_path, 'w', encoding='utf-8') as f:json.dump(val_conversations, f, ensure_ascii=False, indent=2)print(f'数据已成功转换并保存为 JSON 文件,训练集: {train_json_path}, 验证集: {val_json_path}')def main():"""主函数,用于处理命令行参数并调用相应的处理函数。"""# 设置参数解析器parser = argparse.ArgumentParser(description='下载并处理LaTeX OCR数据集,并将其转换为JSON格式')parser.add_argument('--max_data_number', type=int, default=10000, help='最大处理图片数量')parser.add_argument('--dataset_id', type=str, default='AI-ModelScope/LaTeX_OCR', help='ModelScope上的数据集ID')parser.add_argument('--subset_name', type=str, default='default', help='数据集中的子集名称')parser.add_argument('--split', type=str, default='train', help='数据集的划分(train/test等)')parser.add_argument('--dataset_dir', type=str, default='LaTeX_OCR', help='图片保存目录')parser.add_argument('--csv_path', type=str, default='./latex_ocr_train.csv', help='CSV文件保存路径')parser.add_argument('--train_json_path', type=str, default='./latex_ocr_train.json', help='训练集JSON文件保存路径')parser.add_argument('--val_json_path', type=str, default='./latex_ocr_val.json', help='验证集JSON文件保存路径')parser.add_argument('--split_ratio', type=float, default=0.9, help='训练集与验证集的划分比例(如0.9表示90%训练集,10%验证集)')args = parser.parse_args()# 检查数据集目录是否已存在if not os.path.exists(args.dataset_dir):download_and_process_dataset(args.max_data_number, args.dataset_id, args.subset_name, args.split, args.dataset_dir, args.csv_path)else:print(f'{args.dataset_dir} 目录已存在,跳过数据处理步骤。')# 转换CSV至JSON,并进行数据集划分convert_csv_to_json(args.csv_path, args.train_json_path, args.val_json_path, args.split_ratio)if __name__ == '__main__':main()
说明
1. 代码结构
LaTeXOCRDatasetProcessor
类
-
__init__
方法:作为类的初始化函数,用于接收多个与数据集处理相关的参数,例如最大处理图片数量、数据集在ModelScope上的标识符、各种文件(图片、CSV、训练集JSON、验证集JSON)的保存路径以及训练集和验证集的划分比例等,将这些参数保存为类的属性,方便后续方法中使用。 -
download_and_process_dataset
方法:- 首先,从ModelScope平台加载指定的数据集,依据设定的最大处理图片数量,限制实际要处理的数据项数。
- 接着,检查并创建用于保存图片的本地目录(若不存在的话)。
- 然后,遍历数据集(在限制数量范围内),针对每条数据,获取其中的图片和LaTeX文本内容,将图片保存到本地指定目录,并记录其绝对路径,同时把图片路径与对应的LaTeX文本分别添加到对应的列表中。在处理过程中,每处理50张图片就打印一次处理进度,方便了解处理情况。
- 最后,利用收集好的图片路径列表和LaTeX文本列表创建一个
DataFrame
,并将其保存为CSV文件,至此完成从原始数据集到CSV文件的处理流程,使得数据以一种更规整的格式存储,便于后续进一步操作。
-
convert_csv_to_json
方法:- 先读取之前生成的CSV文件内容到
DataFrame
中,然后按照特定的对话格式要求,遍历DataFrame
中的每一行数据,将图片路径作为“用户”角色的内容,对应的LaTeX文本作为“助手”角色的内容,构建出一个个对话形式的字典,并添加到conversations
列表中,以此将数据整理成符合后续训练要求的格式。 - 之后,依据设定的划分比例,计算出训练集和验证集的分割索引,从而将
conversations
列表中的数据划分为训练集和验证集两部分。 - 最后,分别将训练集和验证集的数据以JSON格式保存到对应的文件路径下,完成数据集格式的最终转换以及训练集、验证集的划分工作,生成的JSON文件可直接用于如模型训练等相关任务中。
- 先读取之前生成的CSV文件内容到
main
函数
- 首先,利用
argparse
库创建一个命令行参数解析器,定义了多个与数据集处理相关的参数,如各类文件路径、最大处理数量、划分比例等,并设置了相应的默认值和帮助信息,方便用户在运行代码时可以灵活指定不同的参数值,以满足不同的需求。 - 接着,解析命令行参数得到具体的参数值,然后使用这些参数值实例化
LaTeXOCRDatasetProcessor
类对象,创建一个专门用于处理数据集的实例。 - 之后,通过判断图片保存目录是否已存在,来决定是否调用
download_and_process_dataset
方法执行数据集下载及处理成CSV文件的步骤。如果目录已存在,就跳过这一步,避免重复处理。 - 最后,无论前面是否执行了下载处理步骤,都会调用
convert_csv_to_json
方法,将已有的(可能是刚生成的,也可能是之前就存在的)CSV文件转换为JSON文件,并划分出训练集和验证集,完成整个数据集处理及准备工作的完整流程。
2. 主程序
在if __name__ == '__main__'
部分启动整个程序,调用main
函数,按照上述main
函数中的逻辑依次执行,先是解析命令行参数,接着实例化数据集处理类并根据实际情况处理数据集、转换格式并划分训练集和验证集,最终得到可用于后续任务
相关文章:

基于Qwen2-VL模型针对LaTeX OCR任务进行微调训练 - 数据处理
基于Qwen2-VL模型针对LaTeX OCR任务进行微调训练 - 数据处理 flyfish 基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_LoRA配置如何写 基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_单图推理 基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_原模型_单图推理 基于Q…...

Microi吾码|开源低代码.NET、VUE低代码项目,表单引擎介绍
Microi吾码|开源低代码.NET、VUE低代码项目,表单引擎介绍 一、摘要二、Microi吾码介绍2.1 功能介绍2.2 团队介绍2.3 上线项目案例 三、Microi吾码表单引擎是什么?四、Microi吾码表单引擎功能4.1 模块引擎 - 由表单引擎驱动4.2 流程引擎 - 由表…...
[Ubuntu] Linux命令收集
1、移动文件夹内的所有文件和子文件夹: 如果你想移动一个文件夹内的所有内容到另一个目录,但不移动该文件夹本身,你可以使用以下命令: 源:/home/ubuntu/www/demo/web下的所有文件及文件夹; 目标…...

鸿蒙应用ArkTS开发-利用axios进行网络请求(实现前后端交互)
引言: 我们上一章实现了简单的登录注册页面,今天小编来带着大家实现完整的登录注册功能。 一、后端的搭建 Spring Boot介绍:Spring Boot是一个用于简化Spring应用程序开发的开源框架。它通过自动配置、内置服务器和预设的最佳实践࿰…...

【开源】使用环信UIKit for uniapp 做一个IM即时聊天应用
环信单群聊 UIKit 是基于环信即时通讯云 IM SDK 开发的一款即时通讯 UI 组件库,提供各种组件实现会话列表、聊天界面、联系人列表及后续界面等功能,帮助开发者根据实际业务需求快速搭建包含 UI 界面的即时通讯应用。 本文教大家使用环信 uniapp UIKit 快…...

计算机网络知识点全梳理(一.TCP/IP网络模型)
目录 TCP/IP网络模型概述 应用层 什么是应用层 应用层功能 应用层协议 传输层 什么是传输层 传输层功能 传输层协议 网络层 什么是网络层 网络层功能 网络层协议 数据链路层 什么是数据链路层 数据链路层功能 物理层 物理层的概念和功能 写在前面 本系列文…...
神州数码DCME-320 online_list.php存在任意文件读取漏洞
免责声明: 本文旨在提供有关特定漏洞的深入信息,帮助用户充分了解潜在的安全风险。发布此信息的目的在于提升网络安全意识和推动技术进步,未经授权访问系统、网络或应用程序,可能会导致法律责任或严重后果。因此,作者不对读者基于本文内容所采取的任何行为承担责任。读者在…...

神经网络基础-神经网络搭建和参数计算
文章目录 1.构建神经网络2. 神经网络的优缺点 1.构建神经网络 在 pytorch 中定义深度神经网络其实就是层堆叠的过程,继承自nn.Module,实现两个方法: __init__方法中定义网络中的层结构,主要是全连接层,并进行初始化。…...

Linux入门攻坚——41、Linux集群系统入门-lvs(2)
lvs-dr:GATEWAY Director只负责请求报文,响应报文不经过Director,直接由RS返回给Client。 lvs-dr的报文路线如上图,基本思路就是报文不会回送Director,第①种情况是VIP、DIP、RIP位于同一个网段,这样&…...
音视频入门基础:MPEG2-TS专题(17)——FFmpeg源码中,解析TS program map section的实现
一、引言 由《音视频入门基础:MPEG2-TS专题(16)——PMT简介》可以知道,PMT表(Program map table)由一个或多个段(Transport stream program map section,简称TS program map sectio…...
了解https原理,对称加密/非对称加密原理,浏览器与服务器加密的进化过程,https做了些什么
最开始的加密 浏览器与服务器之间需要防止传输的数据被黑客破解。因此,浏览器在发送数据时会对数据进行加密,并把加密的密钥(或密钥的某些部分)放在数据的某一个区域中。服务器收到数据后,会提取密钥并用它来解密数据…...
山西省第十八届职业院校技能大赛高职组 5G 组网与运维赛项规程
山西省第十八届职业院校技能大赛高职组 5G 组网与运维赛项规程 一、赛项名称 赛项编号:GZ035 赛项名称:5G 组网与运维 赛项组别:高职学生组、教师组 二、竞赛目的 2019 年 6 月 6 日,5G 牌照正式发放,标志着我国全面进…...
tcpdump编译 wireshark远程抓包
https://github.com/westes/flex/releases/download/v2.6.4/flex-2.6.4.tar.gz tar -zxvf flex-2.6.4.tar.gz ./configure CFLAGS-D_GNU_SOURCE make sudo make installwget http://ftp.gnu.org/gnu/bison/bison-3.2.1.tar.gz ./configure make sudo make install以上两个库是…...

Web开发 -前端部分-CSS
CSS CSS(Cascading Style Sheet):层叠样式表,用于控制页面的样式(表现)。 一 基础知识 1 标题格式 标题格式一: 行内样式 <!DOCTYPE html> <html lang"en"><head><meta…...

用 Python Turtle 绘制流动星空:编程中的璀璨星河
用 Python Turtle 绘制流动星空:编程中的璀璨星河 🐸 前言 🐸🐞往期绘画>>点击进所有绘画🐞🐋 效果图 🐋🐉 代码 🐉 🐸 前言 🐸 夜空中繁星…...

Java从入门到工作2 - IDEA
2.1、项目启动 从git获取到项目代码后,用idea打开。 安装依赖完成Marven/JDK等配置检查数据库配置启动相关服务 安装依赖 如果个别依赖从私服下载不了,可以去maven官网下载补充。 如果run时提示程序包xx不存在,在项目目录右键Marven->Re…...
fastadmin批量压缩下载远程视频文件
后端代码 // 批量下载并压缩 public function downloadAll(){$ids input(ids);$row $this->model->where(id, in, $ids)->field(id,title,video_url)->select();if (!$row) {$this->error(记录不存在);}$arr [];$tempFiles []; // 用来存储临时下载的视频文…...
【保姆级】Mac如何安装+切换Java环境
本文从如何下载不同版本的JDK,到如何丝滑的切换JDK,以及常见坑坑的处理方法,应有尽有,各位看官走过路过不要错过~~~ 下载⏬ 首先上官网: https://www.oracle.com/ 打不开的话可以使用下面👇这个中文的 https://www.oracle.com/cn/java/technologies/downloads/a…...

2024首届世界酒中国菜国际地理标志产品美食文化节成功举办篇章
2024首届世界酒中国菜国际地理标志产品美食文化节成功举办,开启美食文化交流新篇章 近日,首届世界酒中国菜国际地理标志产品美食文化节在中国国际地理标志大厦成功举办,这场为期三天的美食文化盛会吸引了来自世界各地的美食爱好者、行业专家…...

Springboot静态资源
默认位置 静态资源访问目录下的资源可以直接访问,默认的四个位置 classpath:/META-INF/resources/(默认加载,不受自定义配置的影响) classpath:/resources/ classpath:/static/ classpath:/public/ 如果在静态目录下存在favic…...

JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...

《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...

ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...

sshd代码修改banner
sshd服务连接之后会收到字符串: SSH-2.0-OpenSSH_9.5 容易被hacker识别此服务为sshd服务。 是否可以通过修改此banner达到让人无法识别此服务的目的呢? 不能。因为这是写的SSH的协议中的。 也就是协议规定了banner必须这么写。 SSH- 开头,…...

【若依】框架项目部署笔记
参考【SpringBoot】【Vue】项目部署_no main manifest attribute, in springboot-0.0.1-sn-CSDN博客 多一个redis安装 准备工作: 压缩包下载:http://download.redis.io/releases 1. 上传压缩包,并进入压缩包所在目录,解压到目标…...

门静脉高压——表现
一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构:由肠系膜上静脉和脾静脉汇合构成,是肝脏血液供应的主要来源。淤血后果:门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血,引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...